IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v21y2011i6p389-399.html
   My bibliography  Save this article

Asymmetric correlations in equity returns: a fundamental-based explanation

Author

Listed:
  • Liang Ding
  • Hiroyoki Miyake
  • Hao Zou

Abstract

Many studies have shown that the correlation of stock portfolio returns is higher during market downturns, while very few of them offer an explanation for the causes of such an asymmetry. This article examines potential fundamental causes for the phenomenon. We find that such an asymmetry is caused by the following sources during market downturns: increasing common fundamental risk, higher correlation of individual fundamental risk and more sensitive loadings of these risk factors. We also find that these fundamental factors can only partially explain the asymmetric correlation. Possible mechanisms for these sources to drive the asymmetry are also discussed in the article.

Suggested Citation

  • Liang Ding & Hiroyoki Miyake & Hao Zou, 2011. "Asymmetric correlations in equity returns: a fundamental-based explanation," Applied Financial Economics, Taylor & Francis Journals, vol. 21(6), pages 389-399.
  • Handle: RePEc:taf:apfiec:v:21:y:2011:i:6:p:389-399
    DOI: 10.1080/09603107.2010.532106
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/09603107.2010.532106
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09603107.2010.532106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    2. Young-Hye Cho & Robert F. Engle, 1999. "Time-Varying Betas and Asymmetric Effect of News: Empirical Analysis of Blue Chip Stocks," NBER Working Papers 7330, National Bureau of Economic Research, Inc.
    3. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linyu Cao & Ruili Sun & Tiefeng Ma & Conan Liu, 2023. "On Asymmetric Correlations and Their Applications in Financial Markets," JRFM, MDPI, vol. 16(3), pages 1-18, March.
    2. Zhang, Chen & Ni, Zhiwei & Ni, Liping, 2016. "Asymmetric multiscale behavior in PM2.5 time series: Based on asymmetric MS-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 355-365.
    3. Kristjanpoller, Werner & Bouri, Elie & Takaishi, Tetsuya, 2020. "Cryptocurrencies and equity funds: Evidence from an asymmetric multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Ruan, Qingsong & Huang, Ying & Jiang, Wei, 2016. "The exceedance and cross-correlations between the gold spot and futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 139-151.
    5. Zhang, Chen & Ni, Zhiwei & Ni, Liping & Li, Jingming & Zhou, Longfei, 2016. "Asymmetric multifractal detrending moving average analysis in time series of PM2.5 concentration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 322-330.
    6. Nianling Wang & Lijie Zhang & Zhuo Huang & Yong Li, 2021. "Asymmetric Correlations in Predicting Portfolio Returns," International Review of Finance, International Review of Finance Ltd., vol. 21(1), pages 97-120, March.
    7. Chung, Y. Peter & Hong, Hyun A. & Kim, S. Thomas, 2019. "What causes the asymmetric correlation in stock returns?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 190-212.
    8. Till Barz & Andreas Nastansky, 2024. "Herausforderungen des finanziellen Risikomanagements: Eine empirische Untersuchung des Value at Risk-Ansatzes in Stresssituationen," Statistische Diskussionsbeiträge 57, Universität Potsdam, Wirtschafts- und Sozialwissenschaftliche Fakultät.
    9. Valadkhani, Abbas, 2022. "Do large-cap exchange-traded funds perform better than their small-cap counterparts in extreme market conditions?☆," Global Finance Journal, Elsevier, vol. 53(C).
    10. Marc Joëts, 2012. "Energy price transmissions during extreme movements," Working Papers hal-04141047, HAL.
    11. Joëts, Marc, 2014. "Energy price transmissions during extreme movements," Economic Modelling, Elsevier, vol. 40(C), pages 392-399.
    12. repec:ipg:wpaper:28 is not listed on IDEAS
    13. repec:ipg:wpaper:2013-028 is not listed on IDEAS
    14. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2011. "The instability of the correlation structure of the S&P 500," MPRA Paper 34160, University Library of Munich, Germany.
    15. Liu, Junlin & Chen, Feier, 2018. "Asymmetric volatility varies in different dry bulk freight rate markets under structure breaks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 316-327.
    16. Cao, Guangxi & Cao, Jie & Xu, Longbing & He, LingYun, 2014. "Detrended cross-correlation analysis approach for assessing asymmetric multifractal detrended cross-correlations and their application to the Chinese financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 460-469.
    17. Lee, Minhyuk & Song, Jae Wook & Park, Ji Hwan & Chang, Woojin, 2017. "Asymmetric multi-fractality in the U.S. stock indices using index-based model of A-MFDFA," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 28-38.
    18. Mensi, Walid & Lee, Yun-Jung & Vinh Vo, Xuan & Yoon, Seong-Min, 2021. "Does oil price variability affect the long memory and weak form efficiency of stock markets in top oil producers and oil Consumers? Evidence from an asymmetric MF-DFA approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    2. Slim Mseddi & Noureddine Benlagha, 2017. "An Analysis of Spillovers Between Islamic and Conventional Stock Bank Returns: Evidence from the GCC Countries," Multinational Finance Journal, Multinational Finance Journal, vol. 21(2), pages 91-132, June.
    3. Luc Bauwens & Christian M. Hafner & Diane Pierret, 2013. "Multivariate Volatility Modeling Of Electricity Futures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 743-761, August.
    4. Philippe Charlot & Vêlayoudom Marimoutou, 2011. "Hierarchical hidden Markov structure for dynamic correlations: the hierarchical RSDC model (version révisée)," Working Papers hal-00605965, HAL.
    5. Hafner, Christian M. & Reznikova, Olga, 2012. "On the estimation of dynamic conditional correlation models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3533-3545.
    6. Annastiina Silvennoinen & Timo Ter�svirta, 2015. "Modeling Conditional Correlations of Asset Returns: A Smooth Transition Approach," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 174-197, February.
    7. John Francis T. Diaz, 2018. "Volatility Dynamics in the ASEAN– China Free Trade Agreement," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(3), pages 287-306, December.
    8. Afees A. Salisu & Kazeem Isah, 2017. "Modeling the spillovers between stock market and money market in Nigeria," Working Papers 023, Centre for Econometric and Allied Research, University of Ibadan.
    9. Carlo Drago & Andrea Scozzari, 2022. "Evaluating conditional covariance estimates via a new targeting approach and a networks-based analysis," Papers 2202.02197, arXiv.org.
    10. Carnero M. Angeles & Eratalay M. Hakan, 2014. "Estimating VAR-MGARCH models in multiple steps," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 339-365, May.
    11. Francq, Christian & Zakoian, Jean-Michel, 2010. "QML estimation of a class of multivariate GARCH models without moment conditions on the observed process," MPRA Paper 20779, University Library of Munich, Germany.
    12. Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014. "Multivariate rotated ARCH models," Journal of Econometrics, Elsevier, vol. 179(1), pages 16-30.
    13. Dennis, Wesselbaum, 2012. "Stochastic Volatility in the U.S. Labor Market," MPRA Paper 43054, University Library of Munich, Germany.
    14. Charlot, Philippe & Marimoutou, Vêlayoudom, 2014. "On the relationship between the prices of oil and the precious metals: Revisiting with a multivariate regime-switching decision tree," Energy Economics, Elsevier, vol. 44(C), pages 456-467.
    15. Büttner, David & Hayo, Bernd, 2011. "Determinants of European stock market integration," Economic Systems, Elsevier, vol. 35(4), pages 574-585.
    16. Koenig, P., 2011. "Modelling Correlation in Carbon and Energy Markets," Cambridge Working Papers in Economics 1123, Faculty of Economics, University of Cambridge.
    17. Llorens-Terrazas, Jordi & Brownlees, Christian, 2023. "Projected Dynamic Conditional Correlations," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1761-1776.
    18. Karol Szafranek, 2015. "Financialisation of the commodity markets. Conclusions from the VARX DCC GARCH," NBP Working Papers 213, Narodowy Bank Polski.
    19. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Adam E Clements & Ayesha Scott & Annastiina Silvennoinen, 2012. "Forecasting multivariate volatility in larger dimensions: some practical issues," NCER Working Paper Series 80, National Centre for Econometric Research.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:21:y:2011:i:6:p:389-399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.