IDEAS home Printed from https://ideas.repec.org/p/por/fepwps/261.html
   My bibliography  Save this paper

Aspectos Metodológicos da Segmentação de Mercado: Base de Segmentação e Métodos de Classificação

Author

Listed:
  • Ana Oliveira-Brochado

    (EDGE, CESUR, DECIVIL-IST, Universidade Técnica de Lisboa)

  • Francisco Vitorino Martins

    (EDGE, Faculdade de Economia da Universidade do Porto)

Abstract

This work provides a broad review of the past literature on market segmentation, focusing on a discussion of proposed bases and classification methods. Multiple segmentation bases are detached, organized according to two axes - observable/ unobservable, general/ specific of the product and evaluated according to some criteria that must be satisfied for an effective segmentation: identifiability, substantiality, accessibility, stability, actionability and responsiveness Classification methods grouped in three classes - nonoverlapping, overlapping and fuzzy, according to the format of the partition matrix they provide.

Suggested Citation

  • Ana Oliveira-Brochado & Francisco Vitorino Martins, 2008. "Aspectos Metodológicos da Segmentação de Mercado: Base de Segmentação e Métodos de Classificação," FEP Working Papers 261, Universidade do Porto, Faculdade de Economia do Porto.
  • Handle: RePEc:por:fepwps:261
    as

    Download full text from publisher

    File URL: http://www.fep.up.pt/investigacao/workingpapers/08.01.17_wp261.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kamakura, Wagner A & Novak, Thomas P, 1992. "Value-System Segmentation: Exploring the Meaning of LOV," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 19(1), pages 119-132, June.
    2. John R. Hauser & Glen L. Urban, 1977. "A Normative Methodology for Modeling Consumer Response to Innovation," Operations Research, INFORMS, vol. 25(4), pages 579-619, August.
    3. Hauser, John R. & Urban, Glen L., 1975. "A normative methodology for modeling consumer response to innovation," Working papers 785-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    4. G. V. Kass, 1980. "An Exploratory Technique for Investigating Large Quantities of Categorical Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 119-127, June.
    5. Wayne Desarbo, 1982. "Gennclus: New models for general nonhierarchical clustering analysis," Psychometrika, Springer;The Psychometric Society, vol. 47(4), pages 449-475, December.
    6. P.-L. Dubois & A. Jolibert, 2005. "Le marketing," Post-Print halshs-00095259, HAL.
    7. Wayne DeSarbo & Richard Oliver & Arvind Rangaswamy, 1989. "A simulated annealing methodology for clusterwise linear regression," Psychometrika, Springer;The Psychometric Society, vol. 54(4), pages 707-736, September.
    8. Wayne DeSarbo & Vijay Mahajan, 1984. "Constrained classification: The use of a priori information in cluster analysis," Psychometrika, Springer;The Psychometric Society, vol. 49(2), pages 187-215, June.
    9. Michel Wedel & Wayne DeSarbo, 1995. "A mixture likelihood approach for generalized linear models," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 21-55, March.
    10. Peter J. Lenk & Wayne S. DeSarbo & Paul E. Green & Martin R. Young, 1996. "Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs," Marketing Science, INFORMS, vol. 15(2), pages 173-191.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mejía Giraldo, Juan Felipe & Valencia Gómez, Adrián, 2024. "Un enfoque antropológico a la segmentación de mercados: aportes de las variables cualitativas en clasificación de consumidores/usuarios," Revista Tendencias, Universidad de Narino, vol. 25(1), pages 220-243, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wayne S. DeSarbo & Qian Chen & Ashley Stadler Blank, 2017. "A Parametric Constrained Segmentation Methodology for Application in Sport Marketing," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 4(4), pages 37-55, December.
    2. John R. Hauser & Steven Shugan, 1978. "Intensity Measures of Consumer Preferences," Discussion Papers 291, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    3. John R. Hauser, 1977. "Consumer Preference Axioms: Behavioral Postulates for Describing and Predicting Stochastic Choice," Discussion Papers 287, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    4. Duncan Fong & Peter Ebbes & Wayne DeSarbo, 2012. "A Heterogeneous Bayesian Regression Model for Cross-sectional Data Involving a Single Observation per Response Unit," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 293-314, April.
    5. Wayne DeSarbo & Richard Oliver & Arvind Rangaswamy, 1989. "A simulated annealing methodology for clusterwise linear regression," Psychometrika, Springer;The Psychometric Society, vol. 54(4), pages 707-736, September.
    6. Réal Carbonneau & Gilles Caporossi & Pierre Hansen, 2014. "Globally Optimal Clusterwise Regression By Column Generation Enhanced with Heuristics, Sequencing and Ending Subset Optimization," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 219-241, July.
    7. repec:dgr:rugsom:96b34 is not listed on IDEAS
    8. Tom Frans Wilderjans & Eva Gaer & Henk A. L. Kiers & Iven Mechelen & Eva Ceulemans, 2017. "Principal Covariates Clusterwise Regression (PCCR): Accounting for Multicollinearity and Population Heterogeneity in Hierarchically Organized Data," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 86-111, March.
    9. Abbie Griffin & John R. Hauser, 1993. "The Voice of the Customer," Marketing Science, INFORMS, vol. 12(1), pages 1-27.
    10. Hauser, John R. & Urban, Glen L., 1976. "Direct assessment of consumer utility functions : von Neumann-Morgenstern utility theory applied to marketing," Working papers 843-76A., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    11. Wedel, Michel & DeSarbo, Wayne S., 1996. "Semiparametric estimation of (constrained) ultrametric trees," Research Report 96B34, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    12. Ana Oliveira-Brochado & Francisco Vitorino Martins, 2008. "Segmentação de Mercado e modelos mistura de regressão para variáveis normais," FEP Working Papers 262, Universidade do Porto, Faculdade de Economia do Porto.
    13. Carbonneau, Réal A. & Caporossi, Gilles & Hansen, Pierre, 2011. "Globally optimal clusterwise regression by mixed logical-quadratic programming," European Journal of Operational Research, Elsevier, vol. 212(1), pages 213-222, July.
    14. Hye Suk & Heungsun Hwang, 2010. "Regularized fuzzy clusterwise ridge regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(1), pages 35-51, April.
    15. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    16. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    17. Andreas Falke & Nadine Schröder & Claudia Hofmann, 2022. "The influence of values in sustainable consumption among millennials," Journal of Business Economics, Springer, vol. 92(6), pages 899-928, August.
    18. Robert Zeithammer & Peter Lenk, 2006. "Bayesian estimation of multivariate-normal models when dimensions are absent," Quantitative Marketing and Economics (QME), Springer, vol. 4(3), pages 241-265, September.
    19. Giuseppe RICCIARDO LAMONICA, 2002. "La funzionalita' nelle zone omogenee delle Marche," Working Papers 165, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    20. Yu Ding & Wayne S. DeSarbo & Dominique M. Hanssens & Kamel Jedidi & John G. Lynch & Donald R. Lehmann, 2020. "The past, present, and future of measurement and methods in marketing analysis," Marketing Letters, Springer, vol. 31(2), pages 175-186, September.
    21. Ghosh, Atish R. & Qureshi, Mahvash S. & Kim, Jun Il & Zalduendo, Juan, 2014. "Surges," Journal of International Economics, Elsevier, vol. 92(2), pages 266-285.
      • Mahvash S Qureshi & Mr. Atish R. Ghosh & Mr. Juan Zalduendo & Mr. Jun I Kim, 2012. "Surges," IMF Working Papers 2012/022, International Monetary Fund.

    More about this item

    Keywords

    market segmentation; effective segmentation; segmentation bases; classification analysis;
    All these keywords.

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General
    • D0 - Microeconomics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:por:fepwps:261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/fepuppt.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.