IDEAS home Printed from https://ideas.repec.org/p/por/fepwps/262.html
   My bibliography  Save this paper

Segmentação de Mercado e modelos mistura de regressão para variáveis normais

Author

Listed:
  • Ana Oliveira-Brochado

    (EDGE, CESUR, DECIVIL-IST, Universidade Técnica de Lisboa)

  • Francisco Vitorino Martins

    (EDGE, Faculdade de Economia da Universidade do Porto)

Abstract

The purpose of this work is to provide an overview of what is perhaps the most common analysis context in market research – that of regression models for normally distributed data. In fact, examples of applications of these models continue to accumulate in the marketing literature, given their relative advantages. Moreover, these models are ease implemented due to its incorporation in many commercial packages of marketing research. We aim at presenting the background for the development of mixture regression models (switching regressions, clusterwise regression and finite mixture models) and review the formulation of the basic model and its main extensions in the context of panel data analysis and conjoint studies.

Suggested Citation

  • Ana Oliveira-Brochado & Francisco Vitorino Martins, 2008. "Segmentação de Mercado e modelos mistura de regressão para variáveis normais," FEP Working Papers 262, Universidade do Porto, Faculdade de Economia do Porto.
  • Handle: RePEc:por:fepwps:262
    as

    Download full text from publisher

    File URL: http://www.fep.up.pt/investigacao/workingpapers/08.01.17_wp262.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Engel, Charles & Hamilton, James D, 1990. "Long Swings in the Dollar: Are They in the Data and Do Markets Know It?," American Economic Review, American Economic Association, vol. 80(4), pages 689-713, September.
    2. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    3. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    4. Wayne S. DeSarbo & Kamel Jedidi & Indrajit Sinha, 2001. "Customer value analysis in a heterogeneous market," Strategic Management Journal, Wiley Blackwell, vol. 22(9), pages 845-857, September.
    5. Cosslett, Stephen R. & Lee, Lung-Fei, 1985. "Serial correlation in latent discrete variable models," Journal of Econometrics, Elsevier, vol. 27(1), pages 79-97, January.
    6. Wayne DeSarbo & Richard Oliver & Arvind Rangaswamy, 1989. "A simulated annealing methodology for clusterwise linear regression," Psychometrika, Springer;The Psychometric Society, vol. 54(4), pages 707-736, September.
    7. Wayne DeSarbo & William Cron, 1988. "A maximum likelihood methodology for clusterwise linear regression," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 249-282, September.
    8. Michel Wedel & Wayne DeSarbo, 1995. "A mixture likelihood approach for generalized linear models," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 21-55, March.
    9. Goldfeld, Stephen M. & Quandt, Richard E., 1973. "A Markov model for switching regressions," Journal of Econometrics, Elsevier, vol. 1(1), pages 3-15, March.
    10. Hamilton, James D, 1991. "A Quasi-Bayesian Approach to Estimating Parameters for Mixtures of Normal Distributions," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(1), pages 27-39, January.
    11. Stanley Sclove, 1987. "Application of model-selection criteria to some problems in multivariate analysis," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 333-343, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamilton, James D., 1996. "Specification testing in Markov-switching time-series models," Journal of Econometrics, Elsevier, vol. 70(1), pages 127-157, January.
    2. Nan Li & Simon S. Kwok, 2021. "Jointly determining the state dimension and lag order for Markov‐switching vector autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 471-491, July.
    3. Psaradakis, Zacharias & Sola, Martin, 1998. "Finite-sample properties of the maximum likelihood estimator in autoregressive models with Markov switching," Journal of Econometrics, Elsevier, vol. 86(2), pages 369-386, June.
    4. Doğan, İbrahim & Bilgili, Faik, 2014. "The non-linear impact of high and growing government external debt on economic growth: A Markov Regime-switching approach," Economic Modelling, Elsevier, vol. 39(C), pages 213-220.
    5. Engel, Charles, 1994. "Can the Markov switching model forecast exchange rates?," Journal of International Economics, Elsevier, vol. 36(1-2), pages 151-165, February.
    6. Dmitry Kulikov, 2012. "Testing for Rational Speculative Bubbles on the Estonian Stock Market," Research in Economics and Business: Central and Eastern Europe, Tallinn School of Economics and Business Administration, Tallinn University of Technology, vol. 4(1).
    7. Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
    8. Ghysels, E., 1993. "A Time Series Model with Periodic Stochastic Regime Switching," Cahiers de recherche 9314, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    9. Atefeh Zarei & Zahra Khodadadi & Mohsen Maleki & Karim Zare, 2023. "Robust mixture regression modeling based on two-piece scale mixtures of normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 181-210, March.
    10. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    11. Marie Bessec, 2000. "Mean-Reversion versus PPP Adjustment: The Two Regimes of Exchange Rate Dynamics Under the EMS, 1979-1998," Econometric Society World Congress 2000 Contributed Papers 1305, Econometric Society.
    12. Duncan Fong & Wayne DeSarbo, 2007. "A Bayesian methodology for simultaneously detecting and estimating regime change points and variable selection in multiple regression models for marketing research," Quantitative Marketing and Economics (QME), Springer, vol. 5(4), pages 427-453, December.
    13. Igor Alexandre Clemente de Morais & Marcelo Savino Portugal, 2003. "Business Cycle in the Industrial Production of Brazilian States," Anais do XXXI Encontro Nacional de Economia [Proceedings of the 31st Brazilian Economics Meeting] e75, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    14. Carol Alexander & Andreas Kaeck, 2006. "Regimes in CDS Spreads: A Markov Switching Model of iTraxx Europe Indices," ICMA Centre Discussion Papers in Finance icma-dp2006-08, Henley Business School, University of Reading.
    15. Ilu, Ahmad Ibraheem, 2019. "Oil price Volatility and Exchange rate Dynamics in Nigeria: A Markov Switching Approach," MPRA Paper 97643, University Library of Munich, Germany.
    16. Mr. Abdul d Abiad, 2003. "Early Warning Systems: A Survey and a Regime-Switching Approach," IMF Working Papers 2003/032, International Monetary Fund.
    17. Kal, Süleyman Hilmi & Arslaner, Ferhat & Arslaner, Nuran, 2013. "Transitional Dynamics of Oil Prices," MPRA Paper 56407, University Library of Munich, Germany.
    18. Morana, Claudio, 2000. "Measuring core inflation in the euro area," Working Paper Series 36, European Central Bank.
    19. Asea, Patrick K. & Blomberg, Brock, 1998. "Lending cycles," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 89-128.
    20. Alexander, Carol & Kaeck, Andreas, 2008. "Regime dependent determinants of credit default swap spreads," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1008-1021, June.

    More about this item

    Keywords

    market segmentation; mixture regression models; normal data.;
    All these keywords.

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General
    • D0 - Microeconomics - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:por:fepwps:262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/fepuppt.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.