IDEAS home Printed from https://ideas.repec.org/p/pav/demwpp/demwp0047.html
   My bibliography  Save this paper

Bayesian operational risk models

Author

Listed:
  • Silvia Figini

    (Department of Political and Social Sciences, University of Pavia)

  • Lijun Gao

    (Management School, Shandong University of Finance, Jinan, China)

  • Paolo Giudici

    (Department of Ecomomics and Management, University of Pavia)

Abstract

Operational risk is hard to quantify, for the presence of heavy tailed loss distributions. Extreme value distributions, used in this context, are very sensitive to the data, and this is a problem in the presence of rare loss data. Self risk assessment questionnaires, if properly modelled, may provide the missing piece of information that is necessary to adequately estimate op- erational risks. In this paper we propose to embody self risk assessment data into suitable prior distributions, and to follow a Bayesian approach to merge self assessment with loss data. We derive operational loss posterior distribu- tions, from which appropriate measures of risk, such as the Value at Risk, or the Expected Shortfall, can be derived. We test our proposed models on a real database, made up of internal loss data and self risk assessment questionnaires of an anonymous commercial bank. Our results show that the proposed Bayesian models performs better with respect to classical extreme value models, leading to a smaller quantification of the Value at Risk required to cover unexpected losses.

Suggested Citation

  • Silvia Figini & Lijun Gao & Paolo Giudici, 2013. "Bayesian operational risk models," DEM Working Papers Series 047, University of Pavia, Department of Economics and Management.
  • Handle: RePEc:pav:demwpp:demwp0047
    as

    Download full text from publisher

    File URL: http://dem-web.unipv.it/web/docs/dipeco/quad/ps/RePEc/pav/demwpp/DEMWP0047.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bonafede, C.E. & Giudici, P., 2007. "Bayesian Networks for enterprise risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 22-28.
    2. Dalla Valle, L. & Giudici, P., 2008. "A Bayesian approach to estimate the marginal loss distributions in operational risk management," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3107-3127, February.
    3. Stuart G. Coles & Jonathan A. Tawn, 1996. "A Bayesian Analysis of Extreme Rainfall Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(4), pages 463-478, December.
    4. Cornalba, Chiara & Giudici, Paolo, 2004. "Statistical models for operational risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 166-172.
    5. S Figini & P Giudici, 2011. "Statistical merging of rating models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1067-1074, June.
    6. Danae Politou & Paolo Giudici, 2009. "Modelling Operational Risk Losses with Graphical Models and Copula Functions," Methodology and Computing in Applied Probability, Springer, vol. 11(1), pages 65-93, March.
    7. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    8. Chavez-Demoulin, V. & Embrechts, P. & Neslehova, J., 2006. "Quantitative models for operational risk: Extremes, dependence and aggregation," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2635-2658, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolo Giudici, 2015. "Scorecard models for operations management," International Journal of Data Science, Inderscience Enterprises Ltd, vol. 1(1), pages 96-101.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iñaki Aldasoro & Leonardo Gambacorta & Paolo Giudici & Thomas Leach, 2023. "Operational and Cyber Risks in the Financial Sector," International Journal of Central Banking, International Journal of Central Banking, vol. 19(5), pages 340-402, December.
    2. Lu, Zhaoyang, 2011. "Modeling the yearly Value-at-Risk for operational risk in Chinese commercial banks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 604-616.
    3. Xu, Chi & Zheng, Chunling & Wang, Donghua & Ji, Jingru & Wang, Nuan, 2019. "Double correlation model for operational risk: Evidence from Chinese commercial banks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 327-339.
    4. Silvia Facchinetti & Paolo Giudici & Silvia Angela Osmetti, 2020. "Cyber risk measurement with ordinal data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 173-185, March.
    5. Mark Bentley & Alec Stephenson & Peter Toscas & Zili Zhu, 2020. "A Multivariate Model to Quantify and Mitigate Cybersecurity Risk," Risks, MDPI, vol. 8(2), pages 1-21, June.
    6. Paolo Giudici, 2015. "Scorecard models for operations management," International Journal of Data Science, Inderscience Enterprises Ltd, vol. 1(1), pages 96-101.
    7. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    8. Pavel V. Shevchenko, 2009. "Implementing Loss Distribution Approach for Operational Risk," Papers 0904.1805, arXiv.org, revised Jul 2009.
    9. Lu Wei & Jianping Li & Xiaoqian Zhu, 2018. "Operational Loss Data Collection: A Literature Review," Annals of Data Science, Springer, vol. 5(3), pages 313-337, September.
    10. Danae Politou & Paolo Giudici, 2009. "Modelling Operational Risk Losses with Graphical Models and Copula Functions," Methodology and Computing in Applied Probability, Springer, vol. 11(1), pages 65-93, March.
    11. Alejandro Balbás & Iván Blanco & José Garrido, 2014. "Measuring Risk When Expected Losses Are Unbounded," Risks, MDPI, vol. 2(4), pages 1-14, September.
    12. repec:cte:idrepe:id-16-01 is not listed on IDEAS
    13. Pavel V. Shevchenko, 2010. "Implementing loss distribution approach for operational risk," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(3), pages 277-307, May.
    14. Dalla Valle, L. & Giudici, P., 2008. "A Bayesian approach to estimate the marginal loss distributions in operational risk management," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3107-3127, February.
    15. Balbás, Beatriz & Balbás, Raquel, 2016. "VaR as the CVaR sensitivity : applications in risk optimization," IC3JM - Estudios = Working Papers id-16-01, Instituto Mixto Carlos III - Juan March de Ciencias Sociales (IC3JM).
    16. Ramírez-Cobo, Pepa & Carrizosa, Emilio & Lillo, Rosa E., 2021. "Analysis of an aggregate loss model in a Markov renewal regime," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    17. Gareth W. Peters & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "Dynamic operational risk: modeling dependence and combining different sources of information," Papers 0904.4074, arXiv.org, revised Jul 2009.
    18. Luciana Dalla Valle, 2009. "Bayesian Copulae Distributions, with Application to Operational Risk Management," Methodology and Computing in Applied Probability, Springer, vol. 11(1), pages 95-115, March.
    19. Sinemis Zengin & Serhat Yuksel, 2016. "A Comparison of the Views of Internal Controllers/Auditors and Branch/Call Center Personnel of the Banks for Operational Risk: A Case for Turkish Banking Sector," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 5(4), pages 10-29, July.
    20. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
    21. Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pav:demwpp:demwp0047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alice Albonico (email available below). General contact details of provider: https://edirc.repec.org/data/dppavit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.