Beyond Boundaries: The AHP-DEA Model for Holistic Cross-Banking Operational Risk Assessment
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Dalla Valle, L. & Giudici, P., 2008. "A Bayesian approach to estimate the marginal loss distributions in operational risk management," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3107-3127, February.
- Liu, Fuh-Hwa Franklin & Hai, Hui Lin, 2005. "The voting analytic hierarchy process method for selecting supplier," International Journal of Production Economics, Elsevier, vol. 97(3), pages 308-317, September.
- Marco Moscadelli, 2004. "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee," Temi di discussione (Economic working papers) 517, Bank of Italy, Economic Research and International Relations Area.
- Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
- Martin Neil & Norman Fenton & Manesh Tailor, 2005. "Using Bayesian Networks to Model Expected and Unexpected Operational Losses," Risk Analysis, John Wiley & Sons, vol. 25(4), pages 963-972, August.
- Andrew Sanford & Imad Moosa, 2015. "Operational risk modelling and organizational learning in structured finance operations: a Bayesian network approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(1), pages 86-115, January.
- Wade D. Cook & Moshe Kress, 1990. "A Data Envelopment Model for Aggregating Preference Rankings," Management Science, INFORMS, vol. 36(11), pages 1302-1310, November.
- Madjid Tavana & Mehdi Soltanifar & Francisco J. Santos-Arteaga, 2023. "Analytical hierarchy process: revolution and evolution," Annals of Operations Research, Springer, vol. 326(2), pages 879-907, July.
- Xu, Chi & Zheng, Chunling & Wang, Donghua & Ji, Jingru & Wang, Nuan, 2019. "Double correlation model for operational risk: Evidence from Chinese commercial banks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 327-339.
- Zhou, Xiaoping & Durfee, Antonina V. & Fabozzi, Frank J., 2016. "On stability of operational risk estimates by LDA: From causes to approaches," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 266-278.
- Han, Jinmian & Wang, Wei & Wang, Jiaqi, 2015. "POT model for operational risk: Experience with the analysis of the data collected from Chinese commercial banks," China Economic Review, Elsevier, vol. 36(C), pages 325-340.
- Valérie Chavez-Demoulin & Paul Embrechts & Marius Hofert, 2016. "An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 735-776, September.
- Y M Wang & K S Chin & J B Yang, 2007. "Three new models for preference voting and aggregation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(10), pages 1389-1393, October.
- Kabir Dutta & Jason Perry, 2006. "A tale of tails: an empirical analysis of loss distribution models for estimating operational risk capital," Working Papers 06-13, Federal Reserve Bank of Boston.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xu, Chi & Zheng, Chunling & Wang, Donghua & Ji, Jingru & Wang, Nuan, 2019. "Double correlation model for operational risk: Evidence from Chinese commercial banks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 327-339.
- Lu Wei & Jianping Li & Xiaoqian Zhu, 2018. "Operational Loss Data Collection: A Literature Review," Annals of Data Science, Springer, vol. 5(3), pages 313-337, September.
- Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
- Yinhong Yao & Jianping Li, 2022. "Operational risk assessment of third-party payment platforms: a case study of China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-20, December.
- Madjid Tavana & Mehdi Soltanifar & Francisco J. Santos-Arteaga, 2023. "Analytical hierarchy process: revolution and evolution," Annals of Operations Research, Springer, vol. 326(2), pages 879-907, July.
- Tüselmann, Heinz & Sinkovics, Rudolf R. & Pishchulov, Grigory, 2016. "Revisiting the standing of international business journals in the competitive landscape," Journal of World Business, Elsevier, vol. 51(4), pages 487-498.
- Yanjin He & Hosang Jung, 2018. "A Voting TOPSIS Approach for Determining the Priorities of Areas Damaged in Disasters," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
- Mohammad Izadikhah & Reza Farzipoor Saen, 2019. "Solving voting system by data envelopment analysis for assessing sustainability of suppliers," Group Decision and Negotiation, Springer, vol. 28(3), pages 641-669, June.
- Färe, Rolf & Karagiannis, Giannis, 2014. "Benefit-of-the-doubt aggregation and the diet problem," Omega, Elsevier, vol. 47(C), pages 33-35.
- Zanella, Andreia & Camanho, Ana S. & Dias, Teresa G., 2015. "Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 245(2), pages 517-530.
- Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
- Amy H. I. Lee & Chun Yu Lin & He-Yau Kang & Wen Hsin Lee, 2012. "An Integrated Performance Evaluation Model for the Photovoltaics Industry," Energies, MDPI, vol. 5(4), pages 1-21, April.
- Robert Huggins & Hiro Izushi, 2009. "Regional Benchmarking in a Global Context: Knowledge, Competitiveness, and Economic Development," Economic Development Quarterly, , vol. 23(4), pages 275-293, November.
- Julián Martinez-Moya & Amparo Mestre-Alcover & Ramon Sala-Garrido, 2024. "Connectivity and competitiveness of the major Mediterranean container ports using ‘Benefit-of-the-Doubt’ and ‘Common Sets of Weights’ methods in Data Envelopment Analysis," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(2), pages 261-282, June.
- Loske, Dominic & Klumpp, Matthias, 2021. "Human-AI collaboration in route planning: An empirical efficiency-based analysis in retail logistics," International Journal of Production Economics, Elsevier, vol. 241(C).
- Robert Jarrow, 2017.
"Operational Risk,"
World Scientific Book Chapters, in: THE ECONOMIC FOUNDATIONS OF RISK MANAGEMENT Theory, Practice, and Applications, chapter 8, pages 69-70,
World Scientific Publishing Co. Pte. Ltd..
- Jarrow, Robert A., 2008. "Operational risk," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 870-879, May.
- Karagiannis, Roxani & Karagiannis, Giannis, 2018. "Intra- and inter-group composite indicators using the BoD model," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 44-51.
- Lu, Zhaoyang, 2011. "Modeling the yearly Value-at-Risk for operational risk in Chinese commercial banks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 604-616.
- Liang Liang & Jie Wu & Wade D. Cook & Joe Zhu, 2008. "The DEA Game Cross-Efficiency Model and Its Nash Equilibrium," Operations Research, INFORMS, vol. 56(5), pages 1278-1288, October.
- Sahar Ahmadvand & Mir Saman Pishvaee, 2018. "An efficient method for kidney allocation problem: a credibility-based fuzzy common weights data envelopment analysis approach," Health Care Management Science, Springer, vol. 21(4), pages 587-603, December.
More about this item
Keywords
operational risk; analytic hierarchy process (AHP); data envelopment analysis (DEA); preference voting system;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:7:p:968-:d:1363319. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.