IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v11y2009i1d10.1007_s11009-008-9083-5.html
   My bibliography  Save this article

Modelling Operational Risk Losses with Graphical Models and Copula Functions

Author

Listed:
  • Danae Politou

    (Citi
    University of Pavia)

  • Paolo Giudici

    (University of Pavia)

Abstract

The management of Operational Risk has been a difficult task due to the lack of data and the high number of variables. In this project, we treat operational risks as multivariate variables. In order to model them, copula functions are employed, which are a widely used tool in finance and engineering for building flexible joint distributions. The purpose of this research is to propose a new methodology for modelling Operational Risks and estimating the required capital. It combines the use of graphical models and the use of copula functions along with hyper-Markov law. Historical loss data of an Italian bank is used, in order to explore the methodology’s behaviour and its potential benefits.

Suggested Citation

  • Danae Politou & Paolo Giudici, 2009. "Modelling Operational Risk Losses with Graphical Models and Copula Functions," Methodology and Computing in Applied Probability, Springer, vol. 11(1), pages 65-93, March.
  • Handle: RePEc:spr:metcap:v:11:y:2009:i:1:d:10.1007_s11009-008-9083-5
    DOI: 10.1007/s11009-008-9083-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-008-9083-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-008-9083-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cornalba, Chiara & Giudici, Paolo, 2004. "Statistical models for operational risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 166-172.
    2. Yamai, Yasuhiro & Yoshiba, Toshinao, 2002. "Comparative Analyses of Expected Shortfall and Value-at-Risk (3): Their Validity under Market Stress," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 20(3), pages 181-237, October.
    3. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Wei & Jianping Li & Xiaoqian Zhu, 2018. "Operational Loss Data Collection: A Literature Review," Annals of Data Science, Springer, vol. 5(3), pages 313-337, September.
    2. Silvia Figini & Lijun Gao & Paolo Giudici, 2013. "Bayesian operational risk models," DEM Working Papers Series 047, University of Pavia, Department of Economics and Management.
    3. Denuit, Michel & Robert, Christian Y., 2020. "Conditional mean risk sharing for dependent risks using graphical models," LIDAM Discussion Papers ISBA 2020029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dalla Valle, L. & Giudici, P., 2008. "A Bayesian approach to estimate the marginal loss distributions in operational risk management," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3107-3127, February.
    2. Yamai, Yasuhiro & Yoshiba, Toshinao, 2005. "Value-at-risk versus expected shortfall: A practical perspective," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 997-1015, April.
    3. Silvia Figini & Lijun Gao & Paolo Giudici, 2013. "Bayesian operational risk models," DEM Working Papers Series 047, University of Pavia, Department of Economics and Management.
    4. Charilaos Mertzanis, 2013. "Risk Management Challenges after the Financial Crisis," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 42(3), pages 285-320, November.
    5. Battaglia, Francesca & Gallo, Angela, 2017. "Strong boards, ownership concentration and EU banks’ systemic risk-taking: Evidence from the financial crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 128-146.
    6. Semih Atakan & Kerem Bülbül & Nilay Noyan, 2017. "Minimizing value-at-risk in single-machine scheduling," Annals of Operations Research, Springer, vol. 248(1), pages 25-73, January.
    7. Giannopoulos, Kostas & Tunaru, Radu, 2005. "Coherent risk measures under filtered historical simulation," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 979-996, April.
    8. Battaglia, Francesca & Gallo, Angela, 2013. "Securitization and systemic risk: An empirical investigation on Italian banks over the financial crisis," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 274-286.
    9. Luciana Dalla Valle, 2009. "Bayesian Copulae Distributions, with Application to Operational Risk Management," Methodology and Computing in Applied Probability, Springer, vol. 11(1), pages 95-115, March.
    10. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
    11. Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.
    12. Iñaki Aldasoro & Leonardo Gambacorta & Paolo Giudici & Thomas Leach, 2023. "Operational and Cyber Risks in the Financial Sector," International Journal of Central Banking, International Journal of Central Banking, vol. 19(5), pages 340-402, December.
    13. Christina Büsing & Sigrid Knust & Xuan Thanh Le, 2018. "Trade-off between robustness and cost for a storage loading problem: rule-based scenario generation," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 339-365, December.
    14. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.
    15. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    16. Jiang Cheng & Hung-Gay Fung & Tzu-Ting Lin & Min-Ming Wen, 2024. "CEO optimism and the use of credit default swaps: evidence from the US life insurance industry," Review of Quantitative Finance and Accounting, Springer, vol. 63(1), pages 169-194, July.
    17. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
    18. Walter Farkas & Pablo Koch-Medina & Cosimo Munari, 2014. "Beyond cash-additive risk measures: when changing the numéraire fails," Finance and Stochastics, Springer, vol. 18(1), pages 145-173, January.
    19. Li, Xiao-Ming & Rose, Lawrence C., 2009. "The tail risk of emerging stock markets," Emerging Markets Review, Elsevier, vol. 10(4), pages 242-256, December.
    20. Choo, Weihao & de Jong, Piet, 2015. "The tradeoff insurance premium as a two-sided generalisation of the distortion premium," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 238-246.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:11:y:2009:i:1:d:10.1007_s11009-008-9083-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.