IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v29y2020i1d10.1007_s10260-019-00470-0.html
   My bibliography  Save this article

Cyber risk measurement with ordinal data

Author

Listed:
  • Silvia Facchinetti

    (Università Cattolica del Sacro Cuore)

  • Paolo Giudici

    (University of Pavia)

  • Silvia Angela Osmetti

    (Università Cattolica del Sacro Cuore)

Abstract

The paper proposes a new methodology to measure cyber risks which, instead of using quantitative loss data, often not available, employs ordinal data. The method relies on the construction of a criticality index, whose properties are discussed and compared with alternative measures employed in operational risk measurement. The methodology is illustrated on data regarding cyber attacks collected at the worldwide level. The proposed measure is found to be quite effective to rank cyber risk types. Thus, from a policy perspective, it can be useful to guide the implementation of preventive actions.

Suggested Citation

  • Silvia Facchinetti & Paolo Giudici & Silvia Angela Osmetti, 2020. "Cyber risk measurement with ordinal data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 173-185, March.
  • Handle: RePEc:spr:stmapp:v:29:y:2020:i:1:d:10.1007_s10260-019-00470-0
    DOI: 10.1007/s10260-019-00470-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-019-00470-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-019-00470-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silvia Figini & Paolo Giudici, 2013. "Measuring risk with ordinal variables," DEM Working Papers Series 032, University of Pavia, Department of Economics and Management.
    2. Jean, William H, 1980. "The Geometric Mean and Stochastic Dominance," Journal of Finance, American Finance Association, vol. 35(1), pages 151-158, March.
    3. Cameron A. MacKenzie, 2014. "Summarizing Risk Using Risk Measures and Risk Indices," Risk Analysis, John Wiley & Sons, vol. 34(12), pages 2143-2162, December.
    4. Antoine Bouveret, 2018. "Cyber Risk for the Financial Sector: A Framework for Quantitative Assessment," IMF Working Papers 2018/143, International Monetary Fund.
    5. Emanuel Kopp & Lincoln Kaffenberger & Christopher Wilson, 2017. "Cyber Risk, Market Failures, and Financial Stability," IMF Working Papers 2017/185, International Monetary Fund.
    6. Kaur, Amarjot & Prakasa Rao, B.L.S. & Singh, Harshinder, 1994. "Testing for Second-Order Stochastic Dominance of Two Distributions," Econometric Theory, Cambridge University Press, vol. 10(5), pages 849-866, December.
    7. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    8. Raffaella Calabrese & Paolo Giudici, 2015. "Estimating bank default with generalised extreme value regression models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(11), pages 1783-1792, November.
    9. S Figini & P Giudici, 2011. "Statistical merging of rating models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1067-1074, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolo Giudici & Emanuela Raffinetti, 2021. "Cyber risk ordering with rank-based statistical models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 469-484, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Figini & Paolo Giudici, 2013. "Measuring risk with ordinal variables," DEM Working Papers Series 032, University of Pavia, Department of Economics and Management.
    2. José Ramón Martínez Resano, 2022. "Digital resilience and financial stability. The quest for policy tools in the financial sector," Financial Stability Review, Banco de España, issue Autumn.
    3. Caporale, Guglielmo Maria & Kang, Woo-Young & Spagnolo, Fabio & Spagnolo, Nicola, 2020. "Non-linearities, cyber attacks and cryptocurrencies," Finance Research Letters, Elsevier, vol. 32(C).
    4. Christophe Courbage & Henri Loubergé & Béatrice Rey, 2018. "On the properties of high-order non-monetary measures for risks," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 43(1), pages 77-94, May.
    5. Zängerle, Daniel & Schiereck, Dirk, 2022. "Modelling and predicting enterprise‑level cyber risks in the context of sparse data availability," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136276, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Aldasoro, Iñaki & Gambacorta, Leonardo & Giudici, Paolo & Leach, Thomas, 2022. "The drivers of cyber risk," Journal of Financial Stability, Elsevier, vol. 60(C).
    7. Silvia Figini & Lijun Gao & Paolo Giudici, 2013. "Bayesian operational risk models," DEM Working Papers Series 047, University of Pavia, Department of Economics and Management.
    8. Paolo Giudici & Gloria Polinesi, 2021. "Crypto price discovery through correlation networks," Annals of Operations Research, Springer, vol. 299(1), pages 443-457, April.
    9. Zanin, Luca, 2020. "Combining multiple probability predictions in the presence of class imbalance to discriminate between potential bad and good borrowers in the peer-to-peer lending market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 25(C).
    10. Yin-Yee Leong & Yen-Chih Chen, 2020. "Cyber risk cost and management in IoT devices-linked health insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(4), pages 737-759, October.
    11. Yin-Yee Leong & Yen-Chih Chen, 0. "Cyber risk cost and management in IoT devices-linked health insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 0, pages 1-23.
    12. Andreas Tsanakas & Pietro Millossovich, 2016. "Sensitivity Analysis Using Risk Measures," Risk Analysis, John Wiley & Sons, vol. 36(1), pages 30-48, January.
    13. José Ramón Martínez Resano, 2022. "Digital resilience and financial stability. The quest for policy tools in the financial sector," Financial Stability Review, Banco de España, issue Autumn.
    14. Paolo Giudici & Paolo Pagnottoni, 2019. "High Frequency Price Change Spillovers in Bitcoin Markets," Risks, MDPI, vol. 7(4), pages 1-18, November.
    15. Paolo Giudici & Emanuela Raffinetti, 2020. "Lorenz Model Selection," Journal of Classification, Springer;The Classification Society, vol. 37(3), pages 754-768, October.
    16. Daniel Zängerle & Dirk Schiereck, 2023. "Modelling and predicting enterprise-level cyber risks in the context of sparse data availability," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 434-462, April.
    17. Paolo Giudici & Emanuela Raffinetti, 2021. "Cyber risk ordering with rank-based statistical models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 469-484, September.
    18. Dan Cheng & Pasquale Cirillo, 2019. "An Urn-Based Nonparametric Modeling of the Dependence between PD and LGD with an Application to Mortgages," Risks, MDPI, vol. 7(3), pages 1-21, July.
    19. Alessandra Amendola & Francesco Giordano & Maria Lucia Parrella & Marialuisa Restaino, 2017. "Variable selection in high‐dimensional regression: a nonparametric procedure for business failure prediction," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 355-368, August.
    20. Avdjiev, S. & Giudici, P. & Spelta, A., 2019. "Measuring contagion risk in international banking," Journal of Financial Stability, Elsevier, vol. 42(C), pages 36-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:29:y:2020:i:1:d:10.1007_s10260-019-00470-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.