IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/q79ye.html
   My bibliography  Save this paper

Deaths without denominators: using a matched dataset to study mortality patterns in the United States

Author

Listed:
  • Alexander, Monica

Abstract

To understand national trends in mortality over time, it is important to study differences by demographic, socioeconomic and geographic characteristics. One issue with studying mortality inequalities, particularly by socioeconomic status, is that there are few micro-level data sources available that link an individual's SES with their eventual age and date of death. In this paper, a new dataset for studying mortality disparities and changes over time in the United States is presented. The dataset, termed 'CenSoc', uses two large-scale datasets: the full-count 1940 Census to obtain demographic, socioeconomic and geographic information; and that is linked to the Social Security Deaths Masterfile (SSDM) to obtain mortality information. This paper also develops mortality estimation methods to better use the 'deaths without denominators' information contained in CenSoc. Bayesian hierarchical methods are presented to estimate truncated death distributions over age and cohort, allowing for prior information in mortality trends to be incorporated and estimates of life expectancy and associated uncertainty to be produced.

Suggested Citation

  • Alexander, Monica, 2018. "Deaths without denominators: using a matched dataset to study mortality patterns in the United States," SocArXiv q79ye, Center for Open Science.
  • Handle: RePEc:osf:socarx:q79ye
    DOI: 10.31219/osf.io/q79ye
    as

    Download full text from publisher

    File URL: https://osf.io/download/5b55cd1f69e43a000fd5442b/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/q79ye?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Willemse, W.J. & Kaas, R., 2007. "Rational reconstruction of frailty-based mortality models by a generalisation of Gompertz' law of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 468-484, May.
    2. Angus S. Deaton & Christina Paxson, 2001. "Mortality, Education, Income, and Inequality among American Cohorts," NBER Chapters, in: Themes in the Economics of Aging, pages 129-170, National Bureau of Economic Research, Inc.
    3. Dan A. Black & Yu-Chieh Hsu & Seth G. Sanders & Lynne Steuerle Schofield & Lowell J. Taylor, 2017. "The Methuselah Effect: The Pernicious Impact of Unreported Deaths on Old-Age Mortality Estimates," Demography, Springer;Population Association of America (PAA), vol. 54(6), pages 2001-2024, December.
    4. Carl Schmertmann & Emilio Zagheni & Joshua R. Goldstein & Mikko Myrskylä, 2014. "Bayesian Forecasting of Cohort Fertility," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 500-513, June.
    5. Ran Abramitzky & Roy Mill & Santiago Pérez, 2020. "Linking individuals across historical sources: A fully automated approach," Historical Methods: A Journal of Quantitative and Interdisciplinary History, Taylor & Francis Journals, vol. 53(2), pages 94-111, April.
    6. Anne Case & Angus Deaton, 2017. "Mortality and Morbidity in the 21st Century," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 48(1 (Spring), pages 397-476.
    7. Trifon Missov & Adam Lenart & Laszlo Nemeth & Vladimir Canudas-Romo & James W. Vaupel, 2015. "The Gompertz force of mortality in terms of the modal age at death," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 32(36), pages 1031-1048.
    8. Shripad Tuljapurkar & Ryan Edwards, 2011. "Variance in death and its implications for modeling and forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 24(21), pages 497-526.
    9. F. Thomas Juster & Richard Suzman, 1995. "An Overview of the Health and Retirement Study," Journal of Human Resources, University of Wisconsin Press, vol. 30, pages 7-56.
    10. Marie-Pier Bergeron-Boucher & Marcus Ebeling & Vladimir Canudas-Romo, 2015. "Decomposing changes in life expectancy: Compression versus shifting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 33(14), pages 391-424.
    11. W.J. Willemse & R. Kaas, 2007. "Rational reconstruction of frailty-based mortality models by a generalisation of Gompertz' law of mortality," DNB Working Papers 135, Netherlands Central Bank, Research Department.
    12. James W. Vaupel & Trifon Missov, 2014. "Unobserved population heterogeneity," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 31(22), pages 659-686.
    13. Leonid Gavrilov & Natalia Gavrilova, 2011. "Mortality Measurement at Advanced Ages," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(3), pages 432-447.
    14. Sorlie, P.D. & Backlund, E. & Keller, J.B., 1995. "US mortality by economic, demographic, and social characteristics: The National Longitudinal Mortality Study," American Journal of Public Health, American Public Health Association, vol. 85(7), pages 949-956.
    15. Barry P. Bosworth & Kathleen Burke, 2014. "Differential Mortality and Retirement Benefits in the Health and Retirement Study," Working Papers, Center for Retirement Research at Boston College wp2014-4, Center for Retirement Research.
    16. John Wilmoth & Shiro Horiuchi, 1999. "Rectangularization revisited: Variability of age at death within human populations," Demography, Springer;Population Association of America (PAA), vol. 36(4), pages 475-495, November.
    17. John Wilmoth & Sarah Zureick & Vladimir Canudas-Romo & Mie Inoue & Cheryl Sawyer, 2012. "A flexible two-dimensional mortality model for use in indirect estimation," Population Studies, Taylor & Francis Journals, vol. 66(1), pages 1-28.
    18. Vladimir Canudas-Romo, 2008. "The modal age at death and the shifting mortality hypothesis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 19(30), pages 1179-1204.
    19. Monica Alexander & Emilio Zagheni & Magali Barbieri, 2017. "A Flexible Bayesian Model for Estimating Subnational Mortality," Demography, Springer;Population Association of America (PAA), vol. 54(6), pages 2025-2041, December.
    20. Christopher J L Murray & Sandeep C Kulkarni & Catherine Michaud & Niels Tomijima & Maria T Bulzacchelli & Terrell J Iandiorio & Majid Ezzati, 2006. "Eight Americas: Investigating Mortality Disparities across Races, Counties, and Race-Counties in the United States," PLOS Medicine, Public Library of Science, vol. 3(9), pages 1-12, September.
    21. Shiro Horiuchi & John Wilmoth, 1998. "Deceleration in the age pattern of mortality at olderages," Demography, Springer;Population Association of America (PAA), vol. 35(4), pages 391-412, November.
    22. Pickett, Kate E. & Wilkinson, Richard G., 2015. "Income inequality and health: A causal review," Social Science & Medicine, Elsevier, vol. 128(C), pages 316-326.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Casey Breen & Joshua R. Goldstein, 2022. "Berkeley Unified Numident Mortality Database: Public administrative records for individual-level mortality research," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(5), pages 111-142.
    2. Goldstein, Joshua R. & Osborne, Maria & Atherwood, Serge & Breen, Casey, 2022. "Mortality Modeling of Partially Observed Cohorts Using Administrative Death Records," SocArXiv efdzh, Center for Open Science.
    3. Joshua R. Goldstein & Maria Osborne & Serge Atherwood & Casey F. Breen, 2023. "Mortality Modeling of Partially Observed Cohorts Using Administrative Death Records," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 42(3), pages 1-20, June.
    4. Breen, Casey & Goldstein, Joshua R., 2022. "Berkeley Unified Numident Mortality Database: Public Administrative Records for Individual-Level Mortality Research," SocArXiv pc294, Center for Open Science.
    5. Breen, Casey & Seltzer, Nathan, 2023. "The Unpredictability of Individual-Level Longevity," SocArXiv znsqg, Center for Open Science.
    6. Breen, Casey, 2024. "Black-White Mortality Crossover: New Evidence from Social Security Mortality Records," SocArXiv ax9u3, Center for Open Science.
    7. Breen, Casey, 2023. "The Longevity Benefits of Homeownership," SocArXiv 7ya3f, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucia Zanotto & Vladimir Canudas-Romo & Stefano Mazzuco, 2021. "A Mixture-Function Mortality Model: Illustration of the Evolution of Premature Mortality," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 1-27, March.
    2. Ugofilippo Basellini & Vladimir Canudas-Romo & Adam Lenart, 2019. "Location–Scale Models in Demography: A Useful Re-parameterization of Mortality Models," European Journal of Population, Springer;European Association for Population Studies, vol. 35(4), pages 645-673, October.
    3. Viorela Diaconu & Nadine Ouellette & Robert Bourbeau, 2020. "Modal lifespan and disparity at older ages by leading causes of death: a Canada-U.S. comparison," Journal of Population Research, Springer, vol. 37(4), pages 323-344, December.
    4. Christina Bohk-Ewald & Marcus Ebeling & Roland Rau, 2017. "Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1559-1577, August.
    5. Nico Keilman & Dinh Q. Pham & Astri Syse, 2018. "Mortality shifts and mortality compression. The case of Norway, 1900-2060," Discussion Papers 884, Statistics Norway, Research Department.
    6. Duncan Gillespie & Meredith Trotter & Shripad Tuljapurkar, 2014. "Divergence in Age Patterns of Mortality Change Drives International Divergence in Lifespan Inequality," Demography, Springer;Population Association of America (PAA), vol. 51(3), pages 1003-1017, June.
    7. Paola Vazquez-Castillo & Marie-Pier Bergeron-Boucher & Trifon Missov, 2024. "Longevity à la mode: A discretized derivative tests method for accurate estimation of the adult modal age at death," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 50(11), pages 325-346.
    8. Janet Currie & Hannes Schwandt & Josselin Thuilliez, 2020. "Pauvreté, Egalité, Mortalité: mortality (in)equality in France and the United States," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(1), pages 197-231, January.
    9. Janet Currie & Hannes Schwandt, 2016. "Mortality Inequality: The Good News from a County-Level Approach," Journal of Economic Perspectives, American Economic Association, vol. 30(2), pages 29-52, Spring.
    10. Hartemink, Nienke & Missov, Trifon I. & Caswell, Hal, 2017. "Stochasticity, heterogeneity, and variance in longevity in human populations," Theoretical Population Biology, Elsevier, vol. 114(C), pages 107-116.
    11. Marie-Pier Bergeron-Boucher & Marcus Ebeling & Vladimir Canudas-Romo, 2015. "Decomposing changes in life expectancy: Compression versus shifting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 33(14), pages 391-424.
    12. Gonzaga, Marcos Roberto & Queiroz, Bernardo L & Lima, Everton, 2017. "Compression of mortality: the evolution in the variability in the age of death in Latin America," OSF Preprints pdnfk, Center for Open Science.
    13. Soumaïla Ouedraogo, 2020. "Estimation of older adult mortality from imperfect data: A comparative review of methods using Burkina Faso censuses," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 43(38), pages 1119-1154.
    14. Claudia Nau & Glenn Firebaugh, 2012. "A New Method for Determining Why Length of Life is More Unequal in Some Populations Than in Others," Demography, Springer;Population Association of America (PAA), vol. 49(4), pages 1207-1230, November.
    15. Joel E. Cohen & Christina Bohk-Ewald & Roland Rau, 2018. "Gompertz, Makeham, and Siler models explain Taylor's law in human mortality data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 38(29), pages 773-842.
    16. Pinheiro, Pedro Cisalpino & Queiroz, Bernardo L, 2018. "Regional Disparities in Brazilian Adult Mortality: an analysis using Modal Age at Death (M) and Compression of Mortality (IQR)," OSF Preprints t2ey3, Center for Open Science.
    17. Saul Justin Newman, 2018. "Errors as a primary cause of late-life mortality deceleration and plateaus," PLOS Biology, Public Library of Science, vol. 16(12), pages 1-12, December.
    18. Konstantinos N. Zafeiris, 2023. "Greece since the 1960s: the mortality transition revisited: a joinpoint regression analysis," Journal of Population Research, Springer, vol. 40(1), pages 1-31, March.
    19. Nico Keilman, 2019. "Mortality shifts and mortality compression in period and cohort life tables," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(40), pages 1147-1196.
    20. Michal Engelman & Hal Caswell & Emily Agree, 2014. "Why do lifespan variability trends for the young and old diverge? A perturbation analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(48), pages 1367-1396.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:q79ye. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.