IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43309-9.html
   My bibliography  Save this article

California’s zero-emission vehicle adoption brings air quality benefits yet equity gaps persist

Author

Listed:
  • Qiao Yu

    (University of California, Los Angeles)

  • Brian Yueshuai He

    (University of California, Los Angeles)

  • Jiaqi Ma

    (University of California, Los Angeles)

  • Yifang Zhu

    (University of California, Los Angeles)

Abstract

Zero-emission vehicle (ZEV) adoption is a key climate mitigation tool, but its environmental justice implications remain unclear. Here, we quantify ZEV adoption at the census tract level in California from 2015 to 2020 and project it to 2035 when all new passenger vehicles sold are expected to be ZEVs. We then apply an integrated traffic model together with a dispersion model to simulate air quality changes near roads in the Greater Los Angeles. We found that per capita ZEV ownership in non-disadvantaged communities (non-DACs) as defined by the state of California is 3.8 times of that in DACs. Racial and ethnic minorities owned fewer ZEVs regardless of DAC designation. While DAC residents receive 40% more pollutant reduction than non-DACs due to intercommunity ZEV trips in 2020, they remain disproportionately exposed to higher levels of traffic-related air pollution. With more ZEVs in 2035, the exposure disparity narrows. However, to further reduce disparities, the focus must include trucks, emphasizing the need for targeted ZEV policies that address persistent pollution burdens among DAC and racial and ethnic minority residents.

Suggested Citation

  • Qiao Yu & Brian Yueshuai He & Jiaqi Ma & Yifang Zhu, 2023. "California’s zero-emission vehicle adoption brings air quality benefits yet equity gaps persist," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43309-9
    DOI: 10.1038/s41467-023-43309-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43309-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43309-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marie Lynn Miranda & Sharon E. Edwards & Martha H. Keating & Christopher J. Paul, 2011. "Making the Environmental Justice Grade: The Relative Burden of Air Pollution Exposure in the United States," IJERPH, MDPI, vol. 8(6), pages 1-17, May.
    2. Canepa, Kathryn & Hardman, Scott & Tal, Gil, 2019. "An early look at plug-in electric vehicle adoption in disadvantaged communities in California," Transport Policy, Elsevier, vol. 78(C), pages 19-30.
    3. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    4. Guo, Shuocheng & Kontou, Eleftheria, 2021. "Disparities and equity issues in electric vehicles rebate allocation," Energy Policy, Elsevier, vol. 154(C).
    5. Muehlegger, Erich & Rapson, David S., 2022. "Subsidizing low- and middle-income adoption of electric vehicles: Quasi-experimental evidence from California," Journal of Public Economics, Elsevier, vol. 216(C).
    6. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2019. "Distributional Effects of Air Pollution from Electric Vehicle Adoption," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(S1), pages 65-94.
    7. Sanya Carley & David M. Konisky, 2020. "The justice and equity implications of the clean energy transition," Nature Energy, Nature, vol. 5(8), pages 569-577, August.
    8. Hsu, Chih-Wei & Fingerman, Kevin, 2021. "Public electric vehicle charger access disparities across race and income in California," Transport Policy, Elsevier, vol. 100(C), pages 59-67.
    9. Saltelli, A. & Andres, T. H. & Homma, T., 1993. "Sensitivity analysis of model output : An investigation of new techniques," Computational Statistics & Data Analysis, Elsevier, vol. 15(2), pages 211-238, February.
    10. DeShazo, J.R. & Sheldon, Tamara L. & Carson, Richard T., 2017. "Designing policy incentives for cleaner technologies: Lessons from California's plug-in electric vehicle rebate program," Journal of Environmental Economics and Management, Elsevier, vol. 84(C), pages 18-43.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Amaral-Santos & Ariaster Chimeli & Joao Paulo Pessoa, 2023. "Natural Gas Vehicles: Consequences to Fuel Markets and the Environment," Working Papers, Department of Economics 2023_07, University of São Paulo (FEA-USP).
    2. Roy, Avipsa & Law, Mankin, 2022. "Examining spatial disparities in electric vehicle charging station placements using machine learning," SocArXiv hvw2t, Center for Open Science.
    3. Gan, Zhongying, 2023. "Do electric vehicle charger locations respond to the potential charging demands from multi-unit dwellings? Evidence from Los Angeles County," Transport Policy, Elsevier, vol. 138(C), pages 74-93.
    4. Fournel, Jean-François, 2023. "Electric Vehicle Subsidies: Cost-Effectiveness and Emission Reductions," TSE Working Papers 23-1465, Toulouse School of Economics (TSE).
    5. Pessoa, Joao Paulo & Santos, Roberto Amaral & Chimeli, Ariaster, 2023. "Natural Gas Vehicles: Consequences to Fuel Markets and the Environment," SocArXiv 7tvgy, Center for Open Science.
    6. Jonas, Tim & Macht, Gretchen A., 2024. "Analyzing the urban-rural divide: Understanding geographic variations in charging behavior for a user-centered EVSE infrastructure," Journal of Transport Geography, Elsevier, vol. 116(C).
    7. Hopkins, Emma & Potoglou, Dimitris & Orford, Scott & Cipcigan, Liana, 2023. "Can the equitable roll out of electric vehicle charging infrastructure be achieved?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    8. Guo, Shuocheng & Kontou, Eleftheria, 2021. "Disparities and equity issues in electric vehicles rebate allocation," Energy Policy, Elsevier, vol. 154(C).
    9. Linn, Joshua & Liang, Jing & Qiu, Yueming, 2022. "Rising US Income Inequality and Declining Residential Electricity Consumption: Is There a Link?," RFF Working Paper Series 22-09, Resources for the Future.
    10. Trinko, David & Horesh, Noah & Porter, Emily & Dunckley, Jamie & Miller, Erika & Bradley, Thomas, 2023. "Transportation and electricity systems integration via electric vehicle charging-as-a-service: A review of techno-economic and societal benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    11. Loni, Abdolah & Asadi, Somayeh, 2023. "Data-driven equitable placement for electric vehicle charging stations: Case study San Francisco," Energy, Elsevier, vol. 282(C).
    12. Vona, Francesco, 2023. "Managing the distributional effects of climate policies: A narrow path to a just transition," Ecological Economics, Elsevier, vol. 205(C).
    13. Burra, Lavan T. & Sommer, Stephan & Vance, Colin, 2024. "Free-ridership in subsidies for company- and private electric vehicles," Energy Economics, Elsevier, vol. 131(C).
    14. Burra, Lavan T. & Sommer, Stephan & Vance, Colin, 2023. "Free-Ridership in Subsidies for Company- and Private Electric Vehicles," Ruhr Economic Papers 1015, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    15. Jacobsen, Grant D., 2024. "Race, ethnicity, and the distribution of energy efficiency incentives," Energy Economics, Elsevier, vol. 130(C).
    16. Tice, Julianne & Batterbury, Simon PJ, 2023. "Who Accesses Solar PV? Energy Justice and Climate Justice in a Local Government Rooftop Solar Programme," Ecology, Economy and Society - the INSEE Journal, Indian Society of Ecological Economics (INSEE), vol. 6(02), July.
    17. Börjesson, Maria & Asplund, Disa & Hamilton, Carl, 2021. "Optimal kilometre tax for electric passenger cars," Working Papers 2021:3, Swedish National Road & Transport Research Institute (VTI).
    18. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    19. Brown, David P. & Muehlenbachs, Lucija, 2023. "The Value of Electricity Reliability: Evidence from Battery Adoption," Working Papers 2023-5, University of Alberta, Department of Economics, revised 26 Jul 2024.
    20. Radtke, Jörg & Scherhaufer, Patrick, 2022. "A social science perspective on conflicts in the energy transition: An introduction to the special issue," Utilities Policy, Elsevier, vol. 78(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43309-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.