IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/jd2xg_v1.html
   My bibliography  Save this paper

Econometric Models for Computing Safe Withdrawal Rates

Author

Listed:
  • Prendergast, Michael

Abstract

This paper describes a methodology for estimating safe withdrawal rates during retirement that is based on a retiree’s age, risk tolerance and investment strategy, and then provides results obtained from using that methodology. The estimates are generated by a three-step process. In the first step, Monte Carlo simulations of future inflation rates, 10-year treasury rates, corporate bond rates (AAA and BAA), the S&P 500 index values and S&P 500 dividend yields are performed. In the second step, portfolio composition and withdrawal rate combinations are evaluated against each of the Monte Carlo simulations in order to calculate portfolio longevity likelihood tables, which are tables that show the likelihood that a portfolio will survive a certain number of years for a given withdrawal rate. In the third and final step, portfolio longevity tables are compared with standard mortality tables in order to estimate the likelihood that the portfolio outlasts the retiree. This three-step approach was then applied using both a Monte Carlo random walk model and an ARIMA/GARCH model based upon over 100 years of monthly historical data. The end result was estimates of the likelihood of portfolio survival to mortality for over 500,000 retiree age/sex/portfolio/withdrawal rate combinations, each combination supported by at least 10,000 Monte Carlo economic simulation points per model. Both models are supported by 100 years of historical data. The first model is a random walk with step sizes determined by bootstrapping, and the second is an ARIMA/GARCH regression model. This data is analyzed to predict safe withdrawal rates and portfolio composition strategies appropriate for the late 2021 economic environment.

Suggested Citation

  • Prendergast, Michael, 2022. "Econometric Models for Computing Safe Withdrawal Rates," OSF Preprints jd2xg_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:jd2xg_v1
    DOI: 10.31219/osf.io/jd2xg_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/61e99e8c7d194f01086a8c39/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/jd2xg_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    2. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    2. Tomanova, Lucie, 2013. "Exchange Rate Volatility and the Foreign Trade in CEEC," EY International Congress on Economics I (EYC2013), October 24-25, 2013, Ankara, Turkey 267, Ekonomik Yaklasim Association.
    3. Chang, Chia-Lin, 2015. "Modelling a latent daily Tourism Financial Conditions Index," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 113-126.
    4. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    5. ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.
    6. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    7. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    8. SILVESTRINI, Andrea & VEREDAS, David, 2005. "Temporal aggregation of univariate linear time series models," LIDAM Discussion Papers CORE 2005059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. repec:wyi:journl:002087 is not listed on IDEAS
    10. Mai, Nhat Chi, 2022. "Tác động của lạm phát đến hoạt động của thị trường chứng khoán ở Việt Nam: Kiểm chứng bằng mô hình GARCH," OSF Preprints azcqd, Center for Open Science.
    11. Angelidis, Dimitrios & Koulakiotis Athanasios & Kiohos Apostolos, 2018. "Feedback Trading Strategies: The Case of Greece and Cyprus," South East European Journal of Economics and Business, Sciendo, vol. 13(1), pages 93-99, June.
    12. Bedoui, Rihab & Braiek, Sana & Guesmi, Khaled & Chevallier, Julien, 2019. "On the conditional dependence structure between oil, gold and USD exchange rates: Nested copula based GJR-GARCH model," Energy Economics, Elsevier, vol. 80(C), pages 876-889.
    13. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    14. Burton, Diana M. & Love, H. Alan, 1996. "A Review of Alternative Expectations Regimes in Commodity Markets: Specification, Estimation, and Hypothesis Testing Using Structural Models," Agricultural and Resource Economics Review, Cambridge University Press, vol. 25(2), pages 213-231, October.
    15. Ibrahim Mohammed & Chioma Nwafor, 2014. "Stock Market Consequences of the Suspension of the Central Bank of Nigeria’s Governor," Managing Global Transitions, University of Primorska, Faculty of Management Koper, vol. 12(4 (Winter), pages 371-394.
    16. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    17. Mohamed CHIKHI & Claude DIEBOLT, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
    18. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    19. Erie Febrian & Aldrin Herwany, 2009. "Volatility Forecasting Models and Market Co-Integration: A Study on South-East Asian Markets," Working Papers in Economics and Development Studies (WoPEDS) 200911, Department of Economics, Padjadjaran University, revised Sep 2009.
    20. Altaf Muhammad & Zhang Shuguang, 2015. "Impact Of Structural Shifts on Variance Persistence in Asymmetric Garch Models: Evidence From Emerging Asian and European Markets," Romanian Statistical Review, Romanian Statistical Review, vol. 63(1), pages 57-70, March.
    21. Govindan, Rajesh & Al-Ansari, Tareq, 2019. "Computational decision framework for enhancing resilience of the energy, water and food nexus in risky environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 653-668.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:jd2xg_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.