IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v36y2016i2p244-261.html
   My bibliography  Save this article

Asteroid Risk Assessment: A Probabilistic Approach

Author

Listed:
  • Jason C. Reinhardt
  • Xi Chen
  • Wenhao Liu
  • Petar Manchev
  • M. Elisabeth Paté‐Cornell

Abstract

Following the 2013 Chelyabinsk event, the risks posed by asteroids attracted renewed interest, from both the scientific and policy‐making communities. It reminded the world that impacts from near‐Earth objects (NEOs), while rare, have the potential to cause great damage to cities and populations. Point estimates of the risk (such as mean numbers of casualties) have been proposed, but because of the low‐probability, high‐consequence nature of asteroid impacts, these averages provide limited actionable information. While more work is needed to further refine its input distributions (e.g., NEO diameters), the probabilistic model presented in this article allows a more complete evaluation of the risk of NEO impacts because the results are distributions that cover the range of potential casualties. This model is based on a modularized simulation that uses probabilistic inputs to estimate probabilistic risk metrics, including those of rare asteroid impacts. Illustrative results of this analysis are presented for a period of 100 years. As part of this demonstration, we assess the effectiveness of civil defense measures in mitigating the risk of human casualties. We find that they are likely to be beneficial but not a panacea. We also compute the probability—but not the consequences—of an impact with global effects (“cataclysm”). We conclude that there is a continued need for NEO observation, and for analyses of the feasibility and risk‐reduction effectiveness of space missions designed to deflect or destroy asteroids that threaten the Earth.

Suggested Citation

  • Jason C. Reinhardt & Xi Chen & Wenhao Liu & Petar Manchev & M. Elisabeth Paté‐Cornell, 2016. "Asteroid Risk Assessment: A Probabilistic Approach," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 244-261, February.
  • Handle: RePEc:wly:riskan:v:36:y:2016:i:2:p:244-261
    DOI: 10.1111/risa.12453
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12453
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven Chesley & Steven Ward, 2006. "A Quantitative Assessment of the Human and Economic Hazard from Impact-generated Tsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(3), pages 355-374, July.
    2. Arnaud Mignan & Patricia Grossi & Robert Muir-Wood, 2011. "Risk assessment of Tunguska-type airbursts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 869-880, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ilan Noy & Tomáš Uher, 2022. "Four New Horsemen of an Apocalypse? Solar Flares, Super-volcanoes, Pandemics, and Artificial Intelligence," Economics of Disasters and Climate Change, Springer, vol. 6(2), pages 393-416, July.
    2. Seth D. Baum, 2018. "Uncertain human consequences in asteroid risk analysis and the global catastrophe threshold," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 759-775, November.
    3. Seth D. Baum, 2019. "Risk–Risk Tradeoff Analysis of Nuclear Explosives for Asteroid Deflection," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2427-2442, November.
    4. Michael Greenberg & Karen Lowrie, 2017. "Elisabeth Paté‐Cornell: Learning from Hazards and Accidents," Risk Analysis, John Wiley & Sons, vol. 37(5), pages 848-853, May.
    5. Perepolkin, Dmytro & Goodrich, Benjamin & Sahlin, Ullrika, 2023. "The tenets of quantile-based inference in Bayesian models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seth D. Baum, 2018. "Uncertain human consequences in asteroid risk analysis and the global catastrophe threshold," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 759-775, November.
    2. Damien Violeau, 2021. "Cosmogenic tsunamic risk assessment: a first application to the European Atlantic coasts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 735-753, January.
    3. Arnaud Mignan & Ziqi Wang, 2020. "Exploring the Space of Possibilities in Cascading Disasters with Catastrophe Dynamics," IJERPH, MDPI, vol. 17(19), pages 1-21, October.
    4. Arnaud Mignan & Stefan Wiemer & Domenico Giardini, 2014. "The quantification of low-probability–high-consequences events: part I. A generic multi-risk approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1999-2022, September.
    5. Arnaud Mignan, 2022. "A Digital Template for the Generic Multi-Risk (GenMR) Framework: A Virtual Natural Environment," IJERPH, MDPI, vol. 19(23), pages 1-22, December.
    6. Iael Perez & Stefania Wörner & Walter Dragani & Guido Bacino & Rubén Medina, 2020. "Meteorite impacts in the ocean: the danger of tsunamis on the coast of Buenos Aires Province, Argentina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2339-2354, September.
    7. Timothy Titus & D. Robertson & J. B. Sankey & L. Mastin & F. Rengers, 2023. "A review of common natural disasters as analogs for asteroid impact effects and cascading hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1355-1402, March.
    8. Arnaud Mignan, 2022. "Categorizing and Harmonizing Natural, Technological, and Socio-Economic Perils Following the Catastrophe Modeling Paradigm," IJERPH, MDPI, vol. 19(19), pages 1-32, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:36:y:2016:i:2:p:244-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.