IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v187y2023ics0167947323001068.html
   My bibliography  Save this article

The tenets of quantile-based inference in Bayesian models

Author

Listed:
  • Perepolkin, Dmytro
  • Goodrich, Benjamin
  • Sahlin, Ullrika

Abstract

Bayesian inference can be extended to probability distributions defined in terms of their inverse distribution function, i.e. their quantile function. This applies to both prior and likelihood. Quantile-based likelihood is useful in models with sampling distributions which lack an explicit probability density function. Quantile-based prior allows for flexible distributions to express expert knowledge. The principle of quantile-based Bayesian inference is demonstrated in the univariate setting with a Govindarajulu likelihood, as well as in a parametric quantile regression, where the error term is described by a quantile function of a Flattened Skew-Logistic distribution.

Suggested Citation

  • Perepolkin, Dmytro & Goodrich, Benjamin & Sahlin, Ullrika, 2023. "The tenets of quantile-based inference in Bayesian models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:csdana:v:187:y:2023:i:c:s0167947323001068
    DOI: 10.1016/j.csda.2023.107795
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323001068
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107795?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    2. Jason C. Reinhardt & Xi Chen & Wenhao Liu & Petar Manchev & M. Elisabeth Paté‐Cornell, 2016. "Asteroid Risk Assessment: A Probabilistic Approach," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 244-261, February.
    3. Paul Fearnhead & Dennis Prangle, 2012. "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(3), pages 419-474, June.
    4. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    5. Christopher C. Drovandi & Anthony N. Pettitt & Malcolm J. Faddy, 2011. "Approximate Bayesian computation using indirect inference," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 60(3), pages 317-337, May.
    6. Warren Gilchrist, 2008. "Regression Revisited," International Statistical Review, International Statistical Institute, vol. 76(3), pages 401-418, December.
    7. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    8. Jonah Gabry & Daniel Simpson & Aki Vehtari & Michael Betancourt & Andrew Gelman, 2019. "Visualization in Bayesian workflow," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(2), pages 389-402, February.
    9. Espen Bernton & Pierre E. Jacob & Mathieu Gerber & Christian P. Robert, 2019. "Approximate Bayesian computation with the Wasserstein distance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 235-269, April.
    10. Fournier, B. & Rupin, N. & Bigerelle, M. & Najjar, D. & Iost, A. & Wilcox, R., 2007. "Estimating the parameters of a generalized lambda distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2813-2835, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    2. Perepolkin, Dmytro & Goodrich, Benjamin & Sahlin, Ullrika, 2021. "The tenets of indirect inference in Bayesian models," OSF Preprints enzgs, Center for Open Science.
    3. Asongu, Simplice A. & Odhiambo, Nicholas M., 2021. "Inequality, finance and renewable energy consumption in Sub-Saharan Africa," Renewable Energy, Elsevier, vol. 165(P1), pages 678-688.
    4. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    5. Abeliansky, Ana & Krenz, Astrid, 2015. "Democracy and international trade: Differential effects from a panel quantile regression framework," University of Göttingen Working Papers in Economics 243, University of Goettingen, Department of Economics.
    6. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    7. repec:hum:wpaper:sfb649dp2015-031 is not listed on IDEAS
    8. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    9. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    10. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    11. Deborah A. Cobb-Clark & Sonja C. Kassenboehmer & Mathias G. Sinning, 2013. "Locus of Control and Savings," Ruhr Economic Papers 0455, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    12. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    13. Chuliá, Helena & Guillén, Montserrat & Uribe, Jorge M., 2017. "Spillovers from the United States to Latin American and G7 stock markets: A VAR quantile analysis," Emerging Markets Review, Elsevier, vol. 31(C), pages 32-46.
    14. Narula, Subhash C. & Wellington, John F. & Lewis, Stephen A., 2012. "Valuating residential real estate using parametric programming," European Journal of Operational Research, Elsevier, vol. 217(1), pages 120-128.
    15. Chesher, Andrew, 2017. "Understanding the effect of measurement error on quantile regressions," Journal of Econometrics, Elsevier, vol. 200(2), pages 223-237.
    16. Lima, Luiz Renato & Néri, Breno Pinheiro, 2007. "Comparing Value-at-Risk Methodologies," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 27(1), May.
    17. Fong, Wai Mun, 2013. "Footprints in the market: Hedge funds and the carry trade," Journal of International Money and Finance, Elsevier, vol. 33(C), pages 41-59.
    18. D.T. Frazier & G.M. Martin & C.P. Robert & J. Rousseau, 2016. "Asymptotic Properties of Approximate Bayesian Computation," Monash Econometrics and Business Statistics Working Papers 18/16, Monash University, Department of Econometrics and Business Statistics.
    19. Kleopatra Nikolaou, 2007. "The behaviour of the real exchange rate: Evidence from regression quantiles," Money Macro and Finance (MMF) Research Group Conference 2006 46, Money Macro and Finance Research Group.
    20. Callaway, Brantly & Li, Tong & Oka, Tatsushi, 2018. "Quantile treatment effects in difference in differences models under dependence restrictions and with only two time periods," Journal of Econometrics, Elsevier, vol. 206(2), pages 395-413.
    21. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:187:y:2023:i:c:s0167947323001068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.