IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v76y2008i3p401-418.html
   My bibliography  Save this article

Regression Revisited

Author

Listed:
  • Warren Gilchrist

Abstract

Sir Francis Galton introduced median regression and the use of the quantile function to describe distributions. Very early on the tradition moved to mean regression and the universal use of the Normal distribution, either as the natural ‘error’ distribution or as one forced by transformation. Though the introduction of ‘quantile regression’ refocused attention on the shape of the variability about the line, it uses nonparametric approaches and so ignores the actual distribution of the ‘error’ term. This paper seeks to show how Galton's approach enables the complete regression model, deterministic and stochastic elements, to be modelled, fitted and investigated. The emphasis is on the range of models that can be used for the stochastic element. It is noted that as the deterministic terms can be built up from components, so to, using quantile functions, can the stochastic element. The model may thus be treated in both modelling and fitting as a unity. Some evidence is presented to justify the use of a much wider range of distributional models than is usually considered and to emphasize their flexibility in extending regression models. Sir Francis Galton (1822–1911) introduisit la régression médiane et l'utilisation de la fonction quartile pour décrire les distributions. Peu après, on entendait que ces termes signifiaient la régression et l'utilisation universelle de la distribution normale ; cette distribution était considérée soit comme la distribution naturelle des erreurs, soit comme celle forcée par des transformations. Bien que l'introduction de la régression quantile ait attiré une nouvelle fois l'attention sur la forme de la dispersion autour de la droite de régression, elle utilise des méthodes nonparamétriques et ne tient donc pas compte de la distribution réelle du terme d'erreur. Cet article cherche à démontrer comment la méthode galtonienne permet la modélisation, le lissage et l'étude du modèle de régression dans son entier, c'est ‐à‐dire l'élément déterministe ainsi que l'élément stochastique. Une importance particulière est accordée à l'ensemble des modèles dont on peut se servir pour considérer l'élément stochastique. De même qu'il est possible d'établir les termes déterministes à partir des composantes, nous notons que l'élément stochastique peut aussi être abordé de la même façon, à l'aide des fonctions quartiles. Le modèle peut donc être considéré comme une entité intégrale, tant pour la modélisation que pour le lissage. Nous apportons des preuves pour justifier l'utilisation d'un plus vaste ensemble de modèles distributionnels que l'on aborde d'habitude et pour souligner leur flexibilité en ce qui concerne l'extension des modèles de régression.

Suggested Citation

  • Warren Gilchrist, 2008. "Regression Revisited," International Statistical Review, International Statistical Institute, vol. 76(3), pages 401-418, December.
  • Handle: RePEc:bla:istatr:v:76:y:2008:i:3:p:401-418
    DOI: 10.1111/j.1751-5823.2008.00053.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1751-5823.2008.00053.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1751-5823.2008.00053.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Warren Gilchrist, 1997. "Modelling with quantile distribution functions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(1), pages 113-122.
    2. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521608275, September.
    3. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    4. Koenker, Roger, 2000. "Galton, Edgeworth, Frisch, and prospects for quantile regression in econometrics," Journal of Econometrics, Elsevier, vol. 95(2), pages 347-374, April.
    5. Kevin Fergusson & Eckhard Platen, 2006. "On the Distributional Characterization of Daily Log-Returns of a World Stock Index," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 19-38.
    6. Samuel Kotz & Donatella Vicari, 2005. "Survey of developments in the theory of continuous skewed distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 225-261.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rockafellar, R.T. & Royset, J.O. & Miranda, S.I., 2014. "Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk," European Journal of Operational Research, Elsevier, vol. 234(1), pages 140-154.
    2. Perepolkin, Dmytro & Goodrich, Benjamin & Sahlin, Ullrika, 2023. "The tenets of quantile-based inference in Bayesian models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    3. Angela Noufaily & M. C. Jones, 2013. "Parametric quantile regression based on the generalized gamma distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(5), pages 723-740, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhao & Cheng, Vivian Xinyi & Liu, Xu, 2024. "Reprint: Hypothesis testing on high dimensional quantile regression," Journal of Econometrics, Elsevier, vol. 239(2).
    2. Marcio Laurini, 2007. "A note on the use of quantile regression in beta convergence analysis," Economics Bulletin, AccessEcon, vol. 3(52), pages 1-8.
    3. Chen, Zhao & Cheng, Vivian Xinyi & Liu, Xu, 2024. "Hypothesis testing on high dimensional quantile regression," Journal of Econometrics, Elsevier, vol. 238(1).
    4. Cathy Chen & Richard Gerlach, 2013. "Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity," Computational Statistics, Springer, vol. 28(3), pages 1103-1131, June.
    5. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    6. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    7. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    8. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    9. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    10. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    11. Chesher, Andrew, 2017. "Understanding the effect of measurement error on quantile regressions," Journal of Econometrics, Elsevier, vol. 200(2), pages 223-237.
    12. Kleopatra Nikolaou, 2007. "The behaviour of the real exchange rate: Evidence from regression quantiles," Money Macro and Finance (MMF) Research Group Conference 2006 46, Money Macro and Finance Research Group.
    13. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    14. Jean-Marc Fournier & Isabell Koske, 2012. "The determinants of earnings inequality: evidence from quantile regressions," OECD Journal: Economic Studies, OECD Publishing, vol. 2012(1), pages 7-36.
    15. Kangning Wang & Lu Lin, 2017. "Robust and efficient direction identification for groupwise additive multiple-index models and its applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 22-45, March.
    16. Chowdhury, Biplob & Jeyasreedharan, Nagaratnam & Dungey, Mardi, 2018. "Quantile relationships between standard, diffusion and jump betas across Japanese banks," Journal of Asian Economics, Elsevier, vol. 59(C), pages 29-47.
    17. Bouri, Elie & Gupta, Rangan & Tiwari, Aviral Kumar & Roubaud, David, 2017. "Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions," Finance Research Letters, Elsevier, vol. 23(C), pages 87-95.
    18. Jamal Bouoiyour & Refk Selmi, 2017. "The Bitcoin price formation: Beyond the fundamental sources," Working Papers hal-01548710, HAL.
    19. Vijverberg, Wim P. & Hasebe, Takuya, 2015. "GTL Regression: A Linear Model with Skewed and Thick-Tailed Disturbances," IZA Discussion Papers 8898, Institute of Labor Economics (IZA).
    20. Chen, Xirong & Li, Degui & Li, Qi & Li, Zheng, 2019. "Nonparametric estimation of conditional quantile functions in the presence of irrelevant covariates," Journal of Econometrics, Elsevier, vol. 212(2), pages 433-450.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:76:y:2008:i:3:p:401-418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.