IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/bjx3q_v1.html
   My bibliography  Save this paper

Recommended LEED-Compliant Cars, SUVs, Vans, Pickup Trucks, Station Wagons, and Two Seaters for Smart Cities Based on the Environmental Damage Index (EDX) and Green Score

Author

Listed:
  • Marzouk, Osama A.

Abstract

An environment with reduced pollution from road vehicles and decarbonized transportation is one of the dimensions of smart cities. In this regard, new sales of vehicles intended for urban use should be oriented toward cleaner (greener) vehicles with less harmful environmental impacts. In the current study, two environmental rating variables provided by the American Council for an Energy-Efficient Economy (ACEEE) for model year 2023 vehicles (U.S. market) in 6 broad classes are employed to identify the best 10 models in each class. These classes are: two seaters (sports cars), cars, SUVs (sport utility vehicles), vans, station wagons (estate cars), and pickups (pickup trucks). The method used in these ratings is based on a combination of emissions life cycle assessment (LCA) and environmental economics. The first ACEEE rating variable is the environmental damage index (EDX), representing an estimated environmental damage cost (in U.S. cents per driving mile). The second ACEEE rating variable is the Green Score, which is a non-dimensional number (0–100 scale) derived from EDX. According to version 4 of the green building certification program LEED (Leadership in Energy and Environmental Design) of the U.S. Green Building Council (USGBC), green vehicles are defined as those having a Green Score of 45 or higher. In the current study, 85 selected top models were found to have a Green Score range from 41 to 67. Only 55 models of them (64.7% portion) are LEED compliant (classified as green vehicles), and thus are more recommended for use within smart cities than other models.

Suggested Citation

  • Marzouk, Osama A., 2024. "Recommended LEED-Compliant Cars, SUVs, Vans, Pickup Trucks, Station Wagons, and Two Seaters for Smart Cities Based on the Environmental Damage Index (EDX) and Green Score," OSF Preprints bjx3q_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:bjx3q_v1
    DOI: 10.31219/osf.io/bjx3q_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/67d9cb19b42d240260f3277c/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/bjx3q_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zawieska, Jakub & Pieriegud, Jana, 2018. "Smart city as a tool for sustainable mobility and transport decarbonisation," Transport Policy, Elsevier, vol. 63(C), pages 39-50.
    2. Budy P. Resosudarmo & Lucentezza Napitupulu, 2004. "Health and Economic Impact of Air Pollution in Jakarta," The Economic Record, The Economic Society of Australia, vol. 80(s1), pages 65-75, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    2. Kisała Magdalena, 2021. "The Polish Experience in the Development of Smart Cities," TalTech Journal of European Studies, Sciendo, vol. 11(2), pages 48-64, September.
    3. Natina Yaduma & Mika Kortelainen & Ada Wossink, 2013. "Estimating Mortality and Economic Costs of Particulate Air Pollution in Developing Countries: The Case of Nigeria," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(3), pages 361-387, March.
    4. Hanna Obracht-Prondzyńska & Ewa Duda & Helena Anacka & Jolanta Kowal, 2022. "Greencoin as an AI-Based Solution Shaping Climate Awareness," IJERPH, MDPI, vol. 19(18), pages 1-25, September.
    5. Kowalska-Pyzalska, Anna & Kott, Joanna & Kott, Marek, 2020. "Why Polish market of alternative fuel vehicles (AFVs) is the smallest in Europe? SWOT analysis of opportunities and threats," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Pamučar, Dragan & Durán-Romero, Gemma & Yazdani, Morteza & López, Ana M., 2023. "A decision analysis model for smart mobility system development under circular economy approach," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    7. Carlo Amendola & Simone La Bella & Gian Piero Joime & Fabio Massimo Frattale Mascioli & Pietro Vito, 2022. "An Integrated Methodology Model for Smart Mobility System Applied to Sustainable Tourism," Administrative Sciences, MDPI, vol. 12(1), pages 1-14, March.
    8. Marek Bauer & Piotr Kisielewski, 2021. "The Influence of the Duration of Journey Stages on Transport Mode Choice: A Case Study in the City of Tarnow," Sustainability, MDPI, vol. 13(11), pages 1-15, May.
    9. Jeremy Webb & Max Briggs & Clevo Wilson, 2018. "Breaking automotive modal lock-in: a choice modelling study of Jakarta commuters," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(1), pages 47-68, January.
    10. Yusuf, Arief Anshory & Resosudarmo, Budy P., 2009. "Does clean air matter in developing countries' megacities? A hedonic price analysis of the Jakarta housing market, Indonesia," Ecological Economics, Elsevier, vol. 68(5), pages 1398-1407, March.
    11. Rith, Monorom & Fillone, Alexis M. & Biona, Jose Bienvenido Manuel M., 2020. "Energy and environmental benefits and policy implications for private passenger vehicles in an emerging metropolis of Southeast Asia – A case study of Metro Manila," Applied Energy, Elsevier, vol. 275(C).
    12. Long Qian & Xiaolin Xu & Yunjie Zhou & Ying Sun & Duoliang Ma, 2023. "Carbon Emission Reduction Effects of the Smart City Pilot Policy in China," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
    13. Mia Amalia & Budy P. Resosudarmo & Jeff Bennett, 2013. "The Consequences of Urban Air Pollution for Child Health: What does Self Reporting Data in the Jakarta Metropolitan Area Reveal?," Departmental Working Papers 2013-09, The Australian National University, Arndt-Corden Department of Economics.
    14. Elena Cigu & Daniela Tatiana Agheorghiesei & Anca Florentina Gavriluță (Vatamanu) & Elena Toader, 2018. "Transport Infrastructure Development, Public Performance and Long-Run Economic Growth: A Case Study for the Eu-28 Countries," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
    15. Saeed Nosratabadi & Amir Mosavi & Shahaboddin Shamshirband & Edmundas Kazimieras Zavadskas & Andry Rakotonirainy & Kwok Wing Chau, 2019. "Sustainable Business Models: A Review," Sustainability, MDPI, vol. 11(6), pages 1-30, March.
    16. Giorgio Besagni & Marco Borgarello, 2020. "The socio-demographic dimensions of the private transportation emissions," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(1), pages 13-24.
    17. Jiaojiao Li & Jianjun Dong & Rui Ren & Zhilong Chen, 2024. "Modeling Resilience of Metro-Based Urban Underground Logistics System Based on Multi-Layer Interdependent Network," Sustainability, MDPI, vol. 16(22), pages 1-23, November.
    18. Piotr Szagała & Andrzej Brzeziński & Tomasz Dybicz & Piotr Olszewski & Beata Osińska, 2024. "Problems with Implementation of Sustainable Urban Mobility in Selected Polish Cities," Sustainability, MDPI, vol. 16(24), pages 1-25, December.
    19. Blanka Tundys & Tomasz Wiśniewski, 2023. "Smart Mobility for Smart Cities—Electromobility Solution Analysis and Development Directions," Energies, MDPI, vol. 16(4), pages 1-20, February.
    20. Gabriele Cepeliauskaite & Benno Keppner & Zivile Simkute & Zaneta Stasiskiene & Leon Leuser & Ieva Kalnina & Nika Kotovica & Jānis Andiņš & Marek Muiste, 2021. "Smart-Mobility Services for Climate Mitigation in Urban Areas: Case Studies of Baltic Countries and Germany," Sustainability, MDPI, vol. 13(8), pages 1-19, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:bjx3q_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.