IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/apyfn_v1.html
   My bibliography  Save this paper

Identifying locations for new bike-sharing stations in Glasgow: an analysis of spatial equity and demand factors

Author

Listed:
  • Beairsto, Jeneva
  • Tian, Yufan
  • Zheng, Linyu
  • Zhao, Qunshan
  • Hong, Jinhyun

Abstract

Worldwide bike-sharing systems are growing in popularity as an alternative, environmentally friendly mode of transportation. As cities seek to further develop bike-sharing programs, it is important to consider how systems should expand to simultaneously address existing inequalities in accessibility, and best serve demand. In this paper, we determine ideal locations for future bike-sharing stations in Glasgow, Scotland, by integrating demand modelling with accessibility considerations. We began by analyzing the spatio-temporal trends of bike-sharing usage, and assessed the spatial equity of access to stations in Glasgow. To identify important determinants of bike-sharing demand, we ran an ordinary least squares regression model using bike sharing trip data from Nextbike Glasgow. We then quantifiably measured the level of spatial accessibility to stations by applying the two-step floating catchment area (2SFCA) methodology and ran a GIS weighted overlay analysis using the significant determinants of station demand. Lastly, we combined the demand and accessibility results to determine where new stations should be located using a maximum covering location problem (MCLP) that maximized the population served. Our results show that distance from transit stations, distance from downtown, employment rates, and nearby cycling lanes are significant factors affecting station-level demand. Furthermore, levels of spatial access were found to be highest primarily in the centre and eastern neighbourhood of Glasgow. These findings aided in determining areas to prioritize for future station locations, and our methodology can easily be applied to other bike-share programs with adjustments according to varying aims for system expansion.

Suggested Citation

  • Beairsto, Jeneva & Tian, Yufan & Zheng, Linyu & Zhao, Qunshan & Hong, Jinhyun, 2020. "Identifying locations for new bike-sharing stations in Glasgow: an analysis of spatial equity and demand factors," OSF Preprints apyfn_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:apyfn_v1
    DOI: 10.31219/osf.io/apyfn_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/5fbd16eca7256300aa83284a/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/apyfn_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lu, Wei & Scott, Darren M. & Dalumpines, Ron, 2018. "Understanding bike share cyclist route choice using GPS data: Comparing dominant routes and shortest paths," Journal of Transport Geography, Elsevier, vol. 71(C), pages 172-181.
    2. Chen, Zhiwei & Guo, Yujie & Stuart, Amy L. & Zhang, Yu & Li, Xiaopeng, 2019. "Exploring the equity performance of bike-sharing systems with disaggregated data: A story of southern Tampa," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 529-545.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sweet, Matthias N. & Scott, Darren M., 2021. "Shared mobility adoption from 2016 to 2018 in the Greater Toronto and Hamilton Area: Demographic or geographic diffusion?," Journal of Transport Geography, Elsevier, vol. 96(C).
    2. Beairsto, Jeneva & Tian, Yufan & Zheng, Linyu & Zhao, Qunshan & Hong, Jinhyun, 2020. "Identifying locations for new bike-sharing stations in Glasgow: an analysis of spatial equity and demand factors," OSF Preprints apyfn, Center for Open Science.
    3. Van Veghel, Daniel & Scott, Darren M., 2024. "Investigating the impacts of bike lanes on bike share ridership: A holistic approach and demonstration," Journal of Transport Geography, Elsevier, vol. 115(C).
    4. Berke, Alex & Truitt, Walter & Larson, Kent, 2024. "Is access to public bike-share networks equitable? A multiyear spatial analysis across 5 U.S. Cities," Journal of Transport Geography, Elsevier, vol. 114(C).
    5. van Oijen, Tim P. & Daamen, Winnie & Hoogendoorn, Serge P., 2020. "Estimation of a recursive link-based logit model and link flows in a sensor equipped network," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 262-281.
    6. Ji, Shujuan & Wang, Xin & Lyu, Tao & Liu, Xiaojie & Wang, Yuanqing & Heinen, Eva & Sun, Zhenwei, 2022. "Understanding cycling distance according to the prediction of the XGBoost and the interpretation of SHAP: A non-linear and interaction effect analysis," Journal of Transport Geography, Elsevier, vol. 103(C).
    7. Gong, Wenjing & Rui, Jin & Li, Tianyu, 2024. "Deciphering urban bike-sharing patterns: An in-depth analysis of natural environment and visual quality in New York's Citi bike system," Journal of Transport Geography, Elsevier, vol. 115(C).
    8. Jacek Oskarbski & Krystian Birr & Karol Żarski, 2021. "Bicycle Traffic Model for Sustainable Urban Mobility Planning," Energies, MDPI, vol. 14(18), pages 1-36, September.
    9. Kębłowski, Wojciech & Dobruszkes, Frédéric & Boussauw, Kobe, 2022. "Moving past sustainable transport studies: Towards a critical perspective on urban transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 74-83.
    10. Chung, Jaehoon & Yao, Enjian & Pan, Long & Ko, Joonho, 2024. "Understanding the route choice preferences of private and dock-based public bike users using GPS data in Seoul, South Korea," Journal of Transport Geography, Elsevier, vol. 116(C).
    11. Lv, Huitao & Li, Haojie & Chen, Yanlu & Feng, Tao, 2023. "An origin-destination level analysis on the competitiveness of bike-sharing to underground using explainable machine learning," Journal of Transport Geography, Elsevier, vol. 113(C).
    12. Duran-Rodas, David & Villeneuve, Dominic & Pereira, Francisco C. & Wulfhorst, Gebhard, 2020. "How fair is the allocation of bike-sharing infrastructure? Framework for a qualitative and quantitative spatial fairness assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 299-319.
    13. Gen Hayauchi & Ryo Ariyoshi & Takayuki Morikawa & Fumihiko Nakamura, 2023. "Assessment of the Improvement of Public Transport in Hillside Cities Considering the Impact of Topography on Walking Choices," Sustainability, MDPI, vol. 15(12), pages 1-12, June.
    14. Fernando Fonseca & Paulo Ribeiro & Carolina Neiva, 2023. "A Planning Practice Method to Assess the Potential for Cycling and to Design a Bicycle Network in a Starter Cycling City in Portugal," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    15. Akbari Majid & Zarghamfard Moslem & Hajisharifi Arezoo & Amir Entekhabi Shahram & Goodarzipour Sadrallah, 2022. "Modelling the Obstacles to using Bicycle Sharing Systems in the Tehran Metropolis: A Structural Analysis," Quaestiones Geographicae, Sciendo, vol. 41(2), pages 109-124, June.
    16. Anaya-Boig, Esther & Cebollada, Àngel & Castelló Bueno, Marc, 2022. "Measuring spatial inequalities in the access to station-based bike-sharing in Barcelona using an Adapted Affordability Index," Journal of Transport Geography, Elsevier, vol. 98(C).
    17. Chen, Zhiwei & Li, Xiaopeng, 2021. "Unobserved heterogeneity in transportation equity analysis: Evidence from a bike-sharing system in southern Tampa," Journal of Transport Geography, Elsevier, vol. 91(C).
    18. Pan, Meiyu (Melrose) & Wong, Stephen & Tainter, Francis & Woelfel, Steve & Ryan, Alyssa, 2024. "Integrating equity in transportation scenario planning: A systematic review," Transport Policy, Elsevier, vol. 145(C), pages 85-95.
    19. Elise Desjardins & Christopher D. Higgins & Darren M. Scott & Emma Apatu & Antonio Páez, 2022. "Correlates of bicycling trip flows in Hamilton, Ontario: fastest, quietest, or balanced routes?," Transportation, Springer, vol. 49(3), pages 867-895, June.
    20. Giuffrida, Nadia & Pilla, Francesco & Carroll, Páraic, 2023. "The social sustainability of cycling: Assessing equity in the accessibility of bike-sharing services," Journal of Transport Geography, Elsevier, vol. 106(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:apyfn_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.