IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/29pvm.html
   My bibliography  Save this paper

Towards Principled Unskewing: Viewing 2020 Election Polls Through a Corrective Lens from 2016

Author

Listed:
  • Isakov, Michael
  • Kuriwaki, Shiro

    (Harvard University)

Abstract

We apply the concept of the data defect index to study the potential impact of systematic errors on the 2020 pre-election polls in 12 presidential battleground states. We investigate the impact under the hypothetical scenarios that (1) the magnitude of the underlying nonresponse bias correlated with supporting Donald Trump is similar to that of the 2016 polls, (2) the pollsters’ ability to correct systematic errors via weighting has not improved significantly, and (3) turnout levels remain similar to 2016. Because survey weights are crucial for our investigations but are often not released, we adopt two approximate methods under different modeling assumptions. Under these scenarios, which may be far from reality, our models shift Trump’s estimated two-party voteshare by a percentage point in his favor in the median battleground state, and increases twofold the uncertainty around the voteshare estimate.

Suggested Citation

  • Isakov, Michael & Kuriwaki, Shiro, 2020. "Towards Principled Unskewing: Viewing 2020 Election Polls Through a Corrective Lens from 2016," OSF Preprints 29pvm, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:29pvm
    DOI: 10.31219/osf.io/29pvm
    as

    Download full text from publisher

    File URL: https://osf.io/download/605685fb90bb4e0181153c3e/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/29pvm?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Will Jennings & Christopher Wlezien, 2018. "Election polling errors across time and space," Nature Human Behaviour, Nature, vol. 2(4), pages 276-283, April.
    2. Drew A. Linzer, 2013. "Dynamic Bayesian Forecasting of Presidential Elections in the States," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 124-134, March.
    3. Lauderdale, Benjamin E. & Linzer, Drew, 2015. "Under-performing, over-performing, or just performing? The limitations of fundamentals-based presidential election forecasting," International Journal of Forecasting, Elsevier, vol. 31(3), pages 965-979.
    4. Gelman, Andrew & King, Gary, 1993. "Why Are American Presidential Election Campaign Polls So Variable When Votes Are So Predictable?," British Journal of Political Science, Cambridge University Press, vol. 23(4), pages 409-451, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lauderdale, Benjamin E. & Bailey, Delia & Blumenau, Jack & Rivers, Douglas, 2020. "Model-based pre-election polling for national and sub-national outcomes in the US and UK," International Journal of Forecasting, Elsevier, vol. 36(2), pages 399-413.
    2. Kang, Seungwoo & Oh, Hee-Seok, 2024. "Forecasting South Korea’s presidential election via multiparty dynamic Bayesian modeling," International Journal of Forecasting, Elsevier, vol. 40(1), pages 124-141.
    3. Bunker, Kenneth, 2020. "A two-stage model to forecast elections in new democracies," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1407-1419.
    4. Munzert, Simon, 2017. "Forecasting elections at the constituency level: A correction–combination procedure," International Journal of Forecasting, Elsevier, vol. 33(2), pages 467-481.
    5. repec:cup:judgdm:v:15:y:2020:i:5:p:863-880 is not listed on IDEAS
    6. Andrew Gelman & Jessica Hullman & Christopher Wlezien & George Elliott Morris, 2020. "Information, incentives, and goals in election forecasts," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(5), pages 863-880, September.
    7. Wang, Samuel S.-H., 2015. "Origins of Presidential poll aggregation: A perspective from 2004 to 2012," International Journal of Forecasting, Elsevier, vol. 31(3), pages 898-909.
    8. Liu, Yezheng & Ye, Chang & Sun, Jianshan & Jiang, Yuanchun & Wang, Hai, 2021. "Modeling undecided voters to forecast elections: From bandwagon behavior and the spiral of silence perspective," International Journal of Forecasting, Elsevier, vol. 37(2), pages 461-483.
    9. Wiśniowski, Arkadiusz & Bijak, Jakub & Forster, Jonathan J. & Smith, Peter W.F., 2019. "Hierarchical model for forecasting the outcomes of binary referenda," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 90-103.
    10. Mongrain, Philippe & Nadeau, Richard & Jérôme, Bruno, 2021. "Playing the synthesizer with Canadian data: Adding polls to a structural forecasting model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 289-301.
    11. Montalvo, José G. & Papaspiliopoulos, Omiros & Stumpf-Fétizon, Timothée, 2019. "Bayesian forecasting of electoral outcomes with new parties’ competition," European Journal of Political Economy, Elsevier, vol. 59(C), pages 52-70.
    12. José Garcia Montalvo & Omiros Papaspiliopoulos & Timothée Stumpf-Fétizon, 2018. "Bayesian forecasting of electoral outcomes with new parties' competition," Economics Working Papers 1624, Department of Economics and Business, Universitat Pompeu Fabra.
    13. Easaw, Joshy & Fang, Yongmei & Heravi, Saeed, 2021. "Using Polls to Forecast Popular Vote Share for US Presidential Elections 2016 and 2020: An Optimal Forecast Combination Based on Ensemble Empirical Model," Cardiff Economics Working Papers E2021/34, Cardiff University, Cardiff Business School, Economics Section.
    14. José García-Montalvo & Omiros Papaspiliopoulos & Timothée Stumpf-Fétizon, 2018. "Bayesian Forecasting of Electoral Outcomes with new Parties' Competition," Working Papers 1065, Barcelona School of Economics.
    15. David A. M. Peterson, 2009. "Campaign Learning and Vote Determinants," American Journal of Political Science, John Wiley & Sons, vol. 53(2), pages 445-460, April.
    16. Steven E. Rigdon & Jason J. Sauppe & Sheldon H. Jacobson, 2015. "Forecasting the 2012 and 2014 Elections Using Bayesian Prediction and Optimization," SAGE Open, , vol. 5(2), pages 21582440155, April.
    17. Fetzer, Thiemo & Yotzov, Ivan, 2023. "(How) Do electoral surprises drive business cycles? Evidence from a new dataset," CEPR Discussion Papers 18306, C.E.P.R. Discussion Papers.
    18. Wang, Wei & Rothschild, David & Goel, Sharad & Gelman, Andrew, 2015. "Forecasting elections with non-representative polls," International Journal of Forecasting, Elsevier, vol. 31(3), pages 980-991.
    19. Jerome, Bruno & Jerome, Veronique & Lewis-Beck, Michael S., 1999. "Polls fail in France: forecasts of the 1997 legislative election1," International Journal of Forecasting, Elsevier, vol. 15(2), pages 163-174, April.
    20. Khan, Urmee & Lieli, Robert P., 2018. "Information flow between prediction markets, polls and media: Evidence from the 2008 presidential primaries," International Journal of Forecasting, Elsevier, vol. 34(4), pages 696-710.
    21. Temporão, Mickael & Dufresne, Yannick & Savoie, Justin & Linden, Clifton van der, 2019. "Crowdsourcing the vote: New horizons in citizen forecasting," International Journal of Forecasting, Elsevier, vol. 35(1), pages 1-10.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:29pvm. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.