Forecasting elections at the constituency level: A correction–combination procedure
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2016.12.001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Drew A. Linzer, 2013. "Dynamic Bayesian Forecasting of Presidential Elections in the States," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 124-134, March.
- Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
- Issler, João Victor & Rodrigues, Claudia & Burjack, Rafael, 2014.
"Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons,"
Journal of International Money and Finance, Elsevier, vol. 42(C), pages 310-335.
- Issler, João Victor & Rodrigues, Claudia Ferreira & Burjack, Rafael, 2013. "Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 735, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Issler, João Victor & Rodrigues, Claudia Ferreira & Burjack, Rafael, 2013. "Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 744, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Lauderdale, Benjamin E. & Linzer, Drew, 2015. "Under-performing, over-performing, or just performing? The limitations of fundamentals-based presidential election forecasting," International Journal of Forecasting, Elsevier, vol. 31(3), pages 965-979.
- Gelman, Andrew & King, Gary, 1993. "Why Are American Presidential Election Campaign Polls So Variable When Votes Are So Predictable?," British Journal of Political Science, Cambridge University Press, vol. 23(4), pages 409-451, October.
- Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
- Montgomery, Jacob M. & Hollenbach, Florian M. & Ward, Michael D., 2012. "Improving Predictions using Ensemble Bayesian Model Averaging," Political Analysis, Cambridge University Press, vol. 20(3), pages 271-291, July.
- Rothschild, David, 2015. "Combining forecasts for elections: Accurate, relevant, and timely," International Journal of Forecasting, Elsevier, vol. 31(3), pages 952-964.
- Park, David K. & Gelman, Andrew & Bafumi, Joseph, 2004. "Bayesian Multilevel Estimation with Poststratification: State-Level Estimates from National Polls," Political Analysis, Cambridge University Press, vol. 12(4), pages 375-385.
- Jackman, Simon, 1994. "Measuring Electoral Bias: Australia, 1949–93," British Journal of Political Science, Cambridge University Press, vol. 24(3), pages 319-357, July.
- Tufte, Edward R., 1973. "The Relationship between Seats and Votes in Two-Party Systems," American Political Science Review, Cambridge University Press, vol. 67(2), pages 540-554, June.
- Graefe, Andreas & Armstrong, J. Scott & Jones, Randall J. & Cuzán, Alfred G., 2014. "Combining forecasts: An application to elections," International Journal of Forecasting, Elsevier, vol. 30(1), pages 43-54.
- Lodge, Milton & Steenbergen, Marco R. & Brau, Shawn, 1995. "The Responsive Voter: Campaign Information and the Dynamics of Candidate Evaluation," American Political Science Review, Cambridge University Press, vol. 89(2), pages 309-326, June.
- Selb, Peter & Munzert, Simon, 2011. "Estimating Constituency Preferences from Sparse Survey Data Using Auxiliary Geographic Information," Political Analysis, Cambridge University Press, vol. 19(4), pages 455-470.
- Magalhães, Pedro C. & Aguiar-Conraria, Luís & Lewis-Beck, Michael S., 2012.
"Forecasting Spanish elections,"
International Journal of Forecasting, Elsevier, vol. 28(4), pages 769-776.
- Pedro C. Magalhães & Luís Francisco Aguiar & Michael S. Lewis-Beck, 2011. "Forecasting Spanish Elections," NIPE Working Papers 17/2011, NIPE - Universidade do Minho.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hanretty, Chris, 2021. "Forecasting multiparty by-elections using Dirichlet regression," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1666-1676.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:cup:judgdm:v:15:y:2020:i:5:p:863-880 is not listed on IDEAS
- Khan, Urmee & Lieli, Robert P., 2018.
"Information flow between prediction markets, polls and media: Evidence from the 2008 presidential primaries,"
International Journal of Forecasting, Elsevier, vol. 34(4), pages 696-710.
- Urmee Khan & Robert Lieli, 2016. "Information Flow Between Prediction Markets, Polls and Media: Evidence from the 2008 Presidential Primaries," Working Papers 201610, University of California at Riverside, Department of Economics.
- Urmee Khan & Robert Lieli, 2017. "Information Flow Between Prediction Markets, Polls and Media: Evidence from the 2008 Presidential Primaries," Working Papers 201711, University of California at Riverside, Department of Economics.
- Lauderdale, Benjamin E. & Bailey, Delia & Blumenau, Jack & Rivers, Douglas, 2020. "Model-based pre-election polling for national and sub-national outcomes in the US and UK," International Journal of Forecasting, Elsevier, vol. 36(2), pages 399-413.
- Andrew Gelman & Jessica Hullman & Christopher Wlezien & George Elliott Morris, 2020. "Information, incentives, and goals in election forecasts," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(5), pages 863-880, September.
- Bunker, Kenneth, 2020. "A two-stage model to forecast elections in new democracies," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1407-1419.
- Montalvo, José G. & Papaspiliopoulos, Omiros & Stumpf-Fétizon, Timothée, 2019. "Bayesian forecasting of electoral outcomes with new parties’ competition," European Journal of Political Economy, Elsevier, vol. 59(C), pages 52-70.
- José Garcia Montalvo & Omiros Papaspiliopoulos & Timothée Stumpf-Fétizon, 2018. "Bayesian forecasting of electoral outcomes with new parties' competition," Economics Working Papers 1624, Department of Economics and Business, Universitat Pompeu Fabra.
- José García-Montalvo & Omiros Papaspiliopoulos & Timothée Stumpf-Fétizon, 2018. "Bayesian Forecasting of Electoral Outcomes with new Parties' Competition," Working Papers 1065, Barcelona School of Economics.
- Rothschild, David, 2015. "Combining forecasts for elections: Accurate, relevant, and timely," International Journal of Forecasting, Elsevier, vol. 31(3), pages 952-964.
- Kang, Seungwoo & Oh, Hee-Seok, 2024. "Forecasting South Korea’s presidential election via multiparty dynamic Bayesian modeling," International Journal of Forecasting, Elsevier, vol. 40(1), pages 124-141.
- Graefe, Andreas & Küchenhoff, Helmut & Stierle, Veronika & Riedl, Bernhard, 2015. "Limitations of Ensemble Bayesian Model Averaging for forecasting social science problems," International Journal of Forecasting, Elsevier, vol. 31(3), pages 943-951.
- Isakov, Michael & Kuriwaki, Shiro, 2020. "Towards Principled Unskewing: Viewing 2020 Election Polls Through a Corrective Lens from 2016," OSF Preprints 29pvm, Center for Open Science.
- Fronzetti Colladon, Andrea, 2020. "Forecasting election results by studying brand importance in online news," International Journal of Forecasting, Elsevier, vol. 36(2), pages 414-427.
- Graefe, Andreas, 2019. "Accuracy of German federal election forecasts, 2013 & 2017," International Journal of Forecasting, Elsevier, vol. 35(3), pages 868-877.
- Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015.
"Golden rule of forecasting: Be conservative,"
Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
- Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2014. "Golden Rule of Forecasting: Be conservative," MPRA Paper 53579, University Library of Munich, Germany.
- Wang, Wei & Rothschild, David & Goel, Sharad & Gelman, Andrew, 2015. "Forecasting elections with non-representative polls," International Journal of Forecasting, Elsevier, vol. 31(3), pages 980-991.
- Temporão, Mickael & Dufresne, Yannick & Savoie, Justin & Linden, Clifton van der, 2019. "Crowdsourcing the vote: New horizons in citizen forecasting," International Journal of Forecasting, Elsevier, vol. 35(1), pages 1-10.
- Jonathan Gellar & Sarah Hughes & Constance Delannoy & Erin Lipman & Shirley Jeoffreys-Leach & Bobby Berkowitz & Grant J. Robertson, "undated". "Calibrated Multilevel Regression with Poststratifiction for the Analysis of SMS Survey Data," Mathematica Policy Research Reports c71d456bbf9f4026988e1a810, Mathematica Policy Research.
- Satopää, Ville A. & Baron, Jonathan & Foster, Dean P. & Mellers, Barbara A. & Tetlock, Philip E. & Ungar, Lyle H., 2014. "Combining multiple probability predictions using a simple logit model," International Journal of Forecasting, Elsevier, vol. 30(2), pages 344-356.
- Graefe, Andreas, 2023. "Embrace the differences: Revisiting the PollyVote method of combining forecasts for U.S. presidential elections (2004 to 2020)," International Journal of Forecasting, Elsevier, vol. 39(1), pages 170-177.
- Graefe, Andreas & Armstrong, J. Scott & Jones, Randall J. & Cuzán, Alfred G., 2014. "Combining forecasts: An application to elections," International Journal of Forecasting, Elsevier, vol. 30(1), pages 43-54.
More about this item
Keywords
Election forecasting; Parliamentary elections; Constituency; Bias; Correction; Combination; Germany;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:33:y:2017:i:2:p:467-481. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.