IDEAS home Printed from https://ideas.repec.org/p/cdf/wpaper/2021-34.html
   My bibliography  Save this paper

Using Polls to Forecast Popular Vote Share for US Presidential Elections 2016 and 2020: An Optimal Forecast Combination Based on Ensemble Empirical Model

Author

Listed:
  • Easaw, Joshy

    (Cardiff Business School)

  • Fang, Yongmei

    (College of Mathematics and Informatics, South China Agricultural University, China)

  • Heravi, Saeed

    (Cardiff Business School)

Abstract

This study introduces the Ensemble Empirical Mode Decomposition (EEMD) technique to forecasting popular vote share. The technique is useful when using polling data, which is pertinent when none of the main candidates is the incumbent. Our main interest in this study is the short- and long-term forecasting and, thus, we consider from the short forecast horizon of 1-day to three months ahead. The EEMD technique is used to decompose the election data for the two most recent US presidential elections; 2016 and 2020 US. Three models, Support Vector Machine (SVM), Neural Network (NN) and ARIMA models are then used to predict the decomposition components. The final hybrid model is then constructed by comparing the prediction performance of the decomposition components. The predicting performance of the combination model are compared with the benchmark individual models, SVM, NN, and ARIMA. In addition, this compared to the single prediction market IOWA Electronic Markets. The results indicated that the prediction performance of EEMD combined model is better than that of individual models.

Suggested Citation

  • Easaw, Joshy & Fang, Yongmei & Heravi, Saeed, 2021. "Using Polls to Forecast Popular Vote Share for US Presidential Elections 2016 and 2020: An Optimal Forecast Combination Based on Ensemble Empirical Model," Cardiff Economics Working Papers E2021/34, Cardiff University, Cardiff Business School, Economics Section.
  • Handle: RePEc:cdf:wpaper:2021/34
    as

    Download full text from publisher

    File URL: http://carbsecon.com/wp/E2021_34.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Drew A. Linzer, 2013. "Dynamic Bayesian Forecasting of Presidential Elections in the States," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 124-134, March.
    2. Lauderdale, Benjamin E. & Linzer, Drew, 2015. "Under-performing, over-performing, or just performing? The limitations of fundamentals-based presidential election forecasting," International Journal of Forecasting, Elsevier, vol. 31(3), pages 965-979.
    3. Yongmei Fang & Bo Guan & Shangjuan Wu & Saeed Heravi, 2020. "Optimal forecast combination based on ensemble empirical mode decomposition for agricultural commodity futures prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 877-886, September.
    4. Graefe, Andreas & Küchenhoff, Helmut & Stierle, Veronika & Riedl, Bernhard, 2015. "Limitations of Ensemble Bayesian Model Averaging for forecasting social science problems," International Journal of Forecasting, Elsevier, vol. 31(3), pages 943-951.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bunker, Kenneth, 2020. "A two-stage model to forecast elections in new democracies," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1407-1419.
    2. Lauderdale, Benjamin E. & Bailey, Delia & Blumenau, Jack & Rivers, Douglas, 2020. "Model-based pre-election polling for national and sub-national outcomes in the US and UK," International Journal of Forecasting, Elsevier, vol. 36(2), pages 399-413.
    3. Kang, Seungwoo & Oh, Hee-Seok, 2024. "Forecasting South Korea’s presidential election via multiparty dynamic Bayesian modeling," International Journal of Forecasting, Elsevier, vol. 40(1), pages 124-141.
    4. Graefe, Andreas, 2019. "Accuracy of German federal election forecasts, 2013 & 2017," International Journal of Forecasting, Elsevier, vol. 35(3), pages 868-877.
    5. Munzert, Simon, 2017. "Forecasting elections at the constituency level: A correction–combination procedure," International Journal of Forecasting, Elsevier, vol. 33(2), pages 467-481.
    6. Liu, Yezheng & Ye, Chang & Sun, Jianshan & Jiang, Yuanchun & Wang, Hai, 2021. "Modeling undecided voters to forecast elections: From bandwagon behavior and the spiral of silence perspective," International Journal of Forecasting, Elsevier, vol. 37(2), pages 461-483.
    7. Isakov, Michael & Kuriwaki, Shiro, 2020. "Towards Principled Unskewing: Viewing 2020 Election Polls Through a Corrective Lens from 2016," OSF Preprints 29pvm, Center for Open Science.
    8. Rui Luo & Jinpei Liu & Piao Wang & Zhifu Tao & Huayou Chen, 2024. "A multisource data‐driven combined forecasting model based on internet search keyword screening method for interval soybean futures price," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 366-390, March.
    9. Tharindu P. De Alwis & S. Yaser Samadi, 2024. "Stacking-based neural network for nonlinear time series analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 901-924, July.
    10. Ramos & Pablo Negri & Martín Breitkopf & María Laura Ojeda, 2021. "From International to Regional Commodity Price Pass-through Using Self-Driven Recurrent Networks," Asociación Argentina de Economía Política: Working Papers 4513, Asociación Argentina de Economía Política.
    11. Chen, Guojin & Liu, Yanzhen & Zhang, Yu, 2021. "Systemic risk measures and distribution forecasting of macroeconomic shocks," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 178-196.
    12. Andreas Graefe & Kesten C Green & J Scott Armstrong, 2019. "Accuracy gains from conservative forecasting: Tests using variations of 19 econometric models to predict 154 elections in 10 countries," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-14, January.
    13. Xiaojie Xu & Yun Zhang, 2022. "Commodity price forecasting via neural networks for coffee, corn, cotton, oats, soybeans, soybean oil, sugar, and wheat," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(3), pages 169-181, July.
    14. Lauderdale, Benjamin E. & Linzer, Drew, 2015. "Under-performing, over-performing, or just performing? The limitations of fundamentals-based presidential election forecasting," International Journal of Forecasting, Elsevier, vol. 31(3), pages 965-979.
    15. Wang, Samuel S.-H., 2015. "Origins of Presidential poll aggregation: A perspective from 2004 to 2012," International Journal of Forecasting, Elsevier, vol. 31(3), pages 898-909.
    16. Nadeau, Richard & Lewis-Beck, Michael S., 2020. "Election forecasts: Cracking the Danish case," International Journal of Forecasting, Elsevier, vol. 36(3), pages 892-898.
    17. Nollenberger, Clemens & Unger, Gina-Maria, 2020. "Fundamentals-Based State-Level Forecasts of the 2020 US Presidential Election," SocArXiv cm58f, Center for Open Science.
    18. Eva Regnier, 2018. "Probability Forecasts Made at Multiple Lead Times," Management Science, INFORMS, vol. 64(5), pages 2407-2426, May.
    19. Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023. "Forecasting mid-price movement of Bitcoin futures using machine learning," Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
    20. Zhongfei Li & Kai Gan & Shaolong Sun & Shouyang Wang, 2023. "A new PM2.5 concentration forecasting system based on AdaBoost‐ensemble system with deep learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 154-175, January.

    More about this item

    Keywords

    Forecasting Popular Votes Shares; Electoral Poll; Forecast combination; Hybrid model; Support Vector Machine;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdf:wpaper:2021/34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Yongdeng Xu (email available below). General contact details of provider: https://edirc.repec.org/data/ecscfuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.