Using Polls to Forecast Popular Vote Share for US Presidential Elections 2016 and 2020: An Optimal Forecast Combination Based on Ensemble Empirical Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Drew A. Linzer, 2013. "Dynamic Bayesian Forecasting of Presidential Elections in the States," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 124-134, March.
- Lauderdale, Benjamin E. & Linzer, Drew, 2015. "Under-performing, over-performing, or just performing? The limitations of fundamentals-based presidential election forecasting," International Journal of Forecasting, Elsevier, vol. 31(3), pages 965-979.
- Yongmei Fang & Bo Guan & Shangjuan Wu & Saeed Heravi, 2020. "Optimal forecast combination based on ensemble empirical mode decomposition for agricultural commodity futures prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 877-886, September.
- Graefe, Andreas & Küchenhoff, Helmut & Stierle, Veronika & Riedl, Bernhard, 2015. "Limitations of Ensemble Bayesian Model Averaging for forecasting social science problems," International Journal of Forecasting, Elsevier, vol. 31(3), pages 943-951.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bunker, Kenneth, 2020. "A two-stage model to forecast elections in new democracies," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1407-1419.
- Lauderdale, Benjamin E. & Bailey, Delia & Blumenau, Jack & Rivers, Douglas, 2020. "Model-based pre-election polling for national and sub-national outcomes in the US and UK," International Journal of Forecasting, Elsevier, vol. 36(2), pages 399-413.
- Kang, Seungwoo & Oh, Hee-Seok, 2024. "Forecasting South Korea’s presidential election via multiparty dynamic Bayesian modeling," International Journal of Forecasting, Elsevier, vol. 40(1), pages 124-141.
- Liu, Yezheng & Ye, Chang & Sun, Jianshan & Jiang, Yuanchun & Wang, Hai, 2021. "Modeling undecided voters to forecast elections: From bandwagon behavior and the spiral of silence perspective," International Journal of Forecasting, Elsevier, vol. 37(2), pages 461-483.
- Isakov, Michael & Kuriwaki, Shiro, 2020. "Towards Principled Unskewing: Viewing 2020 Election Polls Through a Corrective Lens from 2016," OSF Preprints 29pvm, Center for Open Science.
- Graefe, Andreas, 2019. "Accuracy of German federal election forecasts, 2013 & 2017," International Journal of Forecasting, Elsevier, vol. 35(3), pages 868-877.
- Munzert, Simon, 2017. "Forecasting elections at the constituency level: A correction–combination procedure," International Journal of Forecasting, Elsevier, vol. 33(2), pages 467-481.
- Rui Luo & Jinpei Liu & Piao Wang & Zhifu Tao & Huayou Chen, 2024. "A multisource data‐driven combined forecasting model based on internet search keyword screening method for interval soybean futures price," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 366-390, March.
- Steven E. Rigdon & Jason J. Sauppe & Sheldon H. Jacobson, 2015. "Forecasting the 2012 and 2014 Elections Using Bayesian Prediction and Optimization," SAGE Open, , vol. 5(2), pages 21582440155, April.
- repec:cup:judgdm:v:15:y:2020:i:5:p:863-880 is not listed on IDEAS
- Bangzhu Zhu & Jingyi Zhang & Chunzhuo Wan & Julien Chevallier & Ping Wang, 2023. "An evolutionary cost‐sensitive support vector machine for carbon price trend forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 741-755, July.
- Tharindu P. De Alwis & S. Yaser Samadi, 2024. "Stacking-based neural network for nonlinear time series analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 901-924, July.
- Richard J. Cebula & Gigi M. Alexander, 2017. "Female Labor Force Participation and Voter Turnout: Evidence from the American Presidential Elections," Review of Economics and Institutions, Università di Perugia, vol. 8(2).
- He, Kaijian & Tso, Geoffrey K.F. & Zou, Yingchao & Liu, Jia, 2018. "Crude oil risk forecasting: New evidence from multiscale analysis approach," Energy Economics, Elsevier, vol. 76(C), pages 574-583.
- Andrew Gelman & Jessica Hullman & Christopher Wlezien & George Elliott Morris, 2020. "Information, incentives, and goals in election forecasts," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(5), pages 863-880, September.
- Ramos & Pablo Negri & Martín Breitkopf & María Laura Ojeda, 2021. "From International to Regional Commodity Price Pass-through Using Self-Driven Recurrent Networks," Asociación Argentina de Economía Política: Working Papers 4513, Asociación Argentina de Economía Política.
- Chen, Guojin & Liu, Yanzhen & Zhang, Yu, 2021. "Systemic risk measures and distribution forecasting of macroeconomic shocks," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 178-196.
- Graefe, Andreas, 2023. "Embrace the differences: Revisiting the PollyVote method of combining forecasts for U.S. presidential elections (2004 to 2020)," International Journal of Forecasting, Elsevier, vol. 39(1), pages 170-177.
- Yue-Jun Zhang & Han Zhang & Rangan Gupta, 2023. "A new hybrid method with data-characteristic-driven analysis for artificial intelligence and robotics index return forecasting," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
- Andreas Graefe & Kesten C Green & J Scott Armstrong, 2019. "Accuracy gains from conservative forecasting: Tests using variations of 19 econometric models to predict 154 elections in 10 countries," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-14, January.
- Xiaojie Xu & Yun Zhang, 2022. "Commodity price forecasting via neural networks for coffee, corn, cotton, oats, soybeans, soybean oil, sugar, and wheat," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(3), pages 169-181, July.
More about this item
Keywords
Forecasting Popular Votes Shares; Electoral Poll; Forecast combination; Hybrid model; Support Vector Machine;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2022-01-10 (Big Data)
- NEP-CMP-2022-01-10 (Computational Economics)
- NEP-FOR-2022-01-10 (Forecasting)
- NEP-POL-2022-01-10 (Positive Political Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdf:wpaper:2021/34. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Yongdeng Xu (email available below). General contact details of provider: https://edirc.repec.org/data/ecscfuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.