IDEAS home Printed from https://ideas.repec.org/p/nse/doctra/m2023-04.html
   My bibliography  Save this paper

Victimations declarees et effets de mode : enseignements de l’experimentation panel multimode de l’enquete Cadre de Vie et Securite

Author

Listed:
  • L. CASTELL

    (Insee)

  • M. CLERC

    (Insee)

  • D. CROZE

    (Insee)

  • S. LEGLEYE

    (Insee)

  • A. NOUGARET

    (Insee)

Abstract

L’enquête de victimation annuelle Cadre de vie et sécurité (CVS), traditionnellement conduite en face-à-face, vise à mieux connaître les faits de délinquance dont les ménages et leurs membres ont pu être victimes. Les enquêtes de victimation peuvent être particulièrement sujettes à des biais liés au mode de collecte utilisé, du fait de la sensibilité de la thématique et de l’impact du mode de collecte à la fois sur le fait de répondre et sur la façon de répondre. En 2019, les répondants de l’exercice 2018 ont été réinterrogés sur deux modes : internet ou téléphone, dans des protocoles séquentiels attribués aléatoirement. Cette expérimentation présente des caractéristiques rares permettant de mobiliser divers types d’informations auxiliaires susceptibles d’aider à produire une estimation fiable des effets de sélection et de mesure : elle est longitudinale et bénéficie du recueil des victimations personnelles ainsi que du sentiment d’insécurité antérieurs ; elle peut être enrichie de données externes sur l’exposition déclarées à des violences via le nombre de dépôts de plaintes pour divers crimes et délits au niveau de l’Iris (découpage infra-communal). Ce document de travail a pour objet de présenter les principaux résultats issus de l’expérimentation CVS panel sur l’impact d’une interrogation par Internet sur la qualité des estimations en matière de victimation. Tout d’abord, il montre que le téléphone est un mode de collecte complémentaire essentiel par rapport à un protocole exclusivement internet, pour disposer d’une meilleure représentativité des répondants. Par ailleurs, il montre qu’il persiste des effets de mesure plus ou moins importants selon les victimations. Pour tenir compte de ces effets, des résultats d’estimation des taux de victimation, fondés sur l’enquête et corrigés des effets de mesure estimés, sont présentés.

Suggested Citation

  • L. Castell & M. Clerc & D. Croze & S. Legleye & A. Nougaret, 2023. "Victimations declarees et effets de mode : enseignements de l’experimentation panel multimode de l’enquete Cadre de Vie et Securite," Documents de Travail de l'Insee - INSEE Working Papers m2023-04, Institut National de la Statistique et des Etudes Economiques.
  • Handle: RePEc:nse:doctra:m2023-04
    as

    Download full text from publisher

    File URL: https://www.insee.fr/fr/statistiques/fichier/version-html/7709248/M2023-04_DT_Victimations-declarees-et-effets-de-mode_enseignements-experimentation-panel-multimode-enquete-CVS.pdf
    File Function: Document de travail "Méthodologie Statistique" de la DMCSI numéro M2023/04
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Quantin, 2018. "Estimation avec le score de propension sous R Abstract : Ce document présente les principales méthodes économétriques utilisant le score de propension pour comparer deux groupes en ajustant des effets," Documents de Travail de l'Insee - INSEE Working Papers m2018-01, Institut National de la Statistique et des Etudes Economiques.
    2. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    3. Schork Joachim & Riillo Cesare A.F. & Neumayr Johann, 2021. "Survey Mode Effects on Objective and Subjective Questions: Evidence from the Labour Force Survey," Journal of Official Statistics, Sciendo, vol. 37(1), pages 213-237, March.
    4. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie Bjørneby & Annette Alstadsæter & Kjetil Telle, 2018. "Collusive tax evasion by employers and employees. Evidence from a randomized fi eld experiment in Norway," Discussion Papers 891, Statistics Norway, Research Department.
    2. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
    3. Art B. Owen & Hal Varian, 2018. "Optimizing the tie-breaker regression discontinuity design," Papers 1808.07563, arXiv.org, revised Jul 2020.
    4. Cristian Mardones & Pablo Herreros, 2023. "Ex post evaluation of voluntary environmental policies on the energy intensity in Chilean firms," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9111-9136, September.
    5. Tymon Słoczyński, 2022. "Interpreting OLS Estimands When Treatment Effects Are Heterogeneous: Smaller Groups Get Larger Weights," The Review of Economics and Statistics, MIT Press, vol. 104(3), pages 501-509, May.
    6. John A. List, 2024. "Field Experiments: Here Today Gone Tomorrow?," The American Economist, Sage Publications, vol. 69(2), pages 214-234, October.
    7. Colnet Bénédicte & Josse Julie & Varoquaux Gaël & Scornet Erwan, 2022. "Causal effect on a target population: A sensitivity analysis to handle missing covariates," Journal of Causal Inference, De Gruyter, vol. 10(1), pages 372-414, January.
    8. Sloczynski, Tymon, 2018. "A General Weighted Average Representation of the Ordinary and Two-Stage Least Squares Estimands," IZA Discussion Papers 11866, Institute of Labor Economics (IZA).
    9. Hao, Shiming, 2021. "True structure change, spurious treatment effect? A novel approach to disentangle treatment effects from structure changes," MPRA Paper 108679, University Library of Munich, Germany.
    10. Byard, Donal & Darrough, Masako & Suh, Jangwon, 2019. "There is No Evidence that Mandatory IFRS Adoption Significantly Decreased IPO Underpricing," SocArXiv b56u2, Center for Open Science.
    11. Karel Janda & Oleg Kravtsov, 2022. "Regulatory Stress Tests and Bank Responses: Heterogeneous Treatment Effect in Dynamic Settings," International Journal of Central Banking, International Journal of Central Banking, vol. 18(2), pages 1-49, June.
    12. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    13. Stefano Carattini & Suphi Sen, 2019. "Carbon Taxes and Stranded Assets: Evidence from Washington State," CESifo Working Paper Series 7785, CESifo.
    14. Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2021. "Long Story Short: Omitted Variable Bias in Causal Machine Learning," Papers 2112.13398, arXiv.org, revised May 2024.
    15. Capuno, Joseph & Kraft, Aleli & O'Donnell, Owen, 2021. "Effectiveness of clinic-based cardiovascular disease prevention: A randomized encouragement design experiment in the Philippines," Social Science & Medicine, Elsevier, vol. 283(C).
    16. Claudio A. Agostini & Eduardo Engel & Andrea Repetto & Damián Vergara, 2018. "Using small businesses for individual tax planning: evidence from special tax regimes in Chile," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 25(6), pages 1449-1489, December.
    17. Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
    18. Graham, Bryan S. & Pinto, Cristine Campos de Xavier, 2022. "Semiparametrically efficient estimation of the average linear regression function," Journal of Econometrics, Elsevier, vol. 226(1), pages 115-138.
    19. Duncan Chaplin & Arif Mamun & Ali Protik & John Schurrer & Divya Vohra & Kristine Bos & Hannah Burak & Laura Meyer & Anca Dumitrescu & Christopher Ksoll & Thomas Cook, "undated". "Grid Electricity Expansion in Tanzania by MCC: Findings from a Rigorous Impact Evaluation, Final Report," Mathematica Policy Research Reports 144768f69008442e96369195e, Mathematica Policy Research.
    20. Aucejo, Esteban M. & French, Jacob & Ugalde Araya, Maria Paola & Zafar, Basit, 2020. "The impact of COVID-19 on student experiences and expectations: Evidence from a survey," Journal of Public Economics, Elsevier, vol. 191(C).

    More about this item

    Keywords

    Enquete multimode; cadre de vie et securite; information auxiliaire; biais de mesure;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods
    • C93 - Mathematical and Quantitative Methods - - Design of Experiments - - - Field Experiments

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nse:doctra:m2023-04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: INSEE (email available below). General contact details of provider: https://edirc.repec.org/data/inseefr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.