IDEAS home Printed from https://ideas.repec.org/p/nsb/bilten/21.html
   My bibliography  Save this paper

Topic classification of economic newspaper articles in a highly inflectional language – the case of Serbia

Author

Listed:
  • Mirko Djukic

    (National Bank of Serbia)

Abstract

The frequency of certain topics in newspaper articles can be a good indicator of some economic developments. The application of topic modelling in the Serbian language, using the LDA model, is hampered by the fact that Serbian is a highly inflectional language, where words have a large number of forms which the model recognises as words with a different meaning. In this paper, we tried to turn that aggravating circumstance into an advantage by reducing only the economic words to their base form. Thus, we attributed to them a greater relevance than to non-economic words, which remained in a large number of forms with a lower frequency of occurrence. As the topics classified in this manner were mostly based on economic expressions, it was expected that they would have a greater applicability in further economic analyses.

Suggested Citation

  • Mirko Djukic, 2024. "Topic classification of economic newspaper articles in a highly inflectional language – the case of Serbia," Working Papers Bulletin 21, National Bank of Serbia.
  • Handle: RePEc:nsb:bilten:21
    as

    Download full text from publisher

    File URL: https://www.nbs.rs/documents-eng/publikacije/wp_bulletin/wp_bulletin_03_24_2.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Larsen, Vegard H. & Thorsrud, Leif Anders & Zhulanova, Julia, 2021. "News-driven inflation expectations and information rigidities," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 507-520.
    2. Angelico, Cristina & Marcucci, Juri & Miccoli, Marcello & Quarta, Filippo, 2022. "Can we measure inflation expectations using Twitter?," Journal of Econometrics, Elsevier, vol. 228(2), pages 259-277.
    3. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Charles Bricongne & Baptiste Meunier & Raquel Caldeira, 2024. "Should Central Banks Care About Text Mining? A Literature Review," Working papers 950, Banque de France.
    2. Saskia Ter Ellen & Vegard H. Larsen & Leif Anders Thorsrud, 2022. "Narrative Monetary Policy Surprises and the Media," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(5), pages 1525-1549, August.
    3. Ajit Desai, 2023. "Machine Learning for Economics Research: When What and How?," Papers 2304.00086, arXiv.org, revised Apr 2023.
    4. Lin Chen & Stephanie Houle, 2023. "Turning Words into Numbers: Measuring News Media Coverage of Shortages," Discussion Papers 2023-8, Bank of Canada.
    5. Chee-Hong Law & Kim Huat Goh, 2024. "A systematic literature review of the implications of media on inflation expectations," International Economics and Economic Policy, Springer, vol. 21(2), pages 311-340, May.
    6. Petrova, Diana, 2022. "Assessment of inflation expectations based on internet data," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 66, pages 25-38.
    7. Irina Wedel & Michael Palk & Stefan Voß, 2022. "A Bilingual Comparison of Sentiment and Topics for a Product Event on Twitter," Information Systems Frontiers, Springer, vol. 24(5), pages 1635-1646, October.
    8. Mohammed Salem Binwahlan, 2023. "Polynomial Networks Model for Arabic Text Summarization," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(2), pages 74-84, February.
    9. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    10. Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    11. Chen, Cathy Yi-Hsuan & Fengler, Matthias R. & Härdle, Wolfgang Karl & Liu, Yanchu, 2022. "Media-expressed tone, option characteristics, and stock return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    12. Viral V. Acharya & Matteo Crosignani & Tim Eisert & Christian Eufinger, 2023. "How Do Supply Shocks to Inflation Generalize? Evidence from the Pandemic Era in Europe," NBER Working Papers 31790, National Bureau of Economic Research, Inc.
    13. Xinyu Li & Zihan Tang, 2022. "Sentiment Analysis on Inflation after Covid-19," Papers 2209.14737, arXiv.org, revised Dec 2022.
    14. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    15. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    16. Klaus Gugler & Florian Szücs & Ulrich Wohak, 2023. "Start-up Acquisitions, Venture Capital and Innovation: A Comparative Study of Google, Apple, Facebook, Amazon and Microsoft," Department of Economics Working Papers wuwp340, Vienna University of Economics and Business, Department of Economics.
    17. Md Nazrul Islam & Md Mofazzal Hossain & Md Shafayet Shahed Ornob, 2024. "Business research on Industry 4.0: a systematic review using topic modelling approach," Future Business Journal, Springer, vol. 10(1), pages 1-15, December.
    18. Juan Shi & Kin Keung Lai & Ping Hu & Gang Chen, 2018. "Factors dominating individual information disseminating behavior on social networking sites," Information Technology and Management, Springer, vol. 19(2), pages 121-139, June.
    19. Ganesh Dash & Chetan Sharma & Shamneesh Sharma, 2023. "Sustainable Marketing and the Role of Social Media: An Experimental Study Using Natural Language Processing (NLP)," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    20. Paola Cerchiello & Giancarlo Nicola, 2018. "Assessing News Contagion in Finance," Econometrics, MDPI, vol. 6(1), pages 1-19, February.

    More about this item

    Keywords

    textual analysis; topic modelling; Latent Dirichlet Allocation; LASSO model;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nsb:bilten:21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marko Miseljic (email available below). General contact details of provider: https://edirc.repec.org/data/nbjgvyu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.