IDEAS home Printed from https://ideas.repec.org/p/net/wpaper/1515.html
   My bibliography  Save this paper

Towards a Digital Attribution Model: Measuring the Impact of Display Advertising on Online Consumer Behavior

Author

Listed:
  • Anindya Ghose

    (Department of Operations, Information, and Management Sciences, Leonard N. Stern School of Business, New York University, 44 West 4th Street, New York 10012, NY, USA)

  • Vilma Todri

    (Department of Operations, Information, and Management Sciences, Leonard N. Stern School of Business, New York University, 44 West 4th Street, New York 10012, NY, USA)

Abstract

The increasing availability of individual-level data has raised the standards for measurability and accountability in digital advertising. Using a massive individual-level data set, our paper captures the effectiveness of display advertising across a wide range of consumer behaviors. Two unique features of our data set that distinguish this paper from prior work are: (i) the information on the actual viewability of impressions and (ii) the duration of exposure to the display advertisements, both at the individual-user level. Employing a natural experiment enabled by our setting, we use difference-in-differences and corresponding matching methods as well as instrumental variable techniques to control for unobservable and observable confounders. We empirically demonstrate that mere exposure to display advertising can increase users’ propensity to search for the brand and the corresponding product; consumers engage both in active search exerting effort to gather information through search engines as well as through direct visits to the advertiser’s website, and in passive search using information sources that arrive exogenously, such as future display ads. We also find statistically and economically significant effect of display advertising on increasing consumers’ propensity to make a purchase. Furthermore, we find that the advertising performance is amplified up to four times when consumers are targeted earlier in the purchase funnel path and that the longer the duration of exposure to display advertising, the more likely the consumers are to engage in direct search behaviors (e.g., direct visits) rather than indirect ones (e.g., search engine inquiries). We also study the effects of various types of display advertising (e.g., prospecting, retargeting, affiliate targeting, video advertising, etc.) and the different goals they achieve. Our framework for evaluating display advertising effectiveness constitutes a stepping stone towards causally addressing the digital attribution problem.

Suggested Citation

  • Anindya Ghose & Vilma Todri, 2015. "Towards a Digital Attribution Model: Measuring the Impact of Display Advertising on Online Consumer Behavior," Working Papers 15-15, NET Institute.
  • Handle: RePEc:net:wpaper:1515
    as

    Download full text from publisher

    File URL: http://www.netinst.org/Ghose_Todri_15-15.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    2. Avi Goldfarb & Catherine Tucker, 2011. "Online Display Advertising: Targeting and Obtrusiveness," Marketing Science, INFORMS, vol. 30(3), pages 389-404, 05-06.
    3. Ron Berman, 2018. "Beyond the Last Touch: Attribution in Online Advertising," Marketing Science, INFORMS, vol. 37(5), pages 771-792, September.
    4. Randall Lewis & Justin M. Rao & David H. Reiley, 2015. "Measuring the Effects of Advertising: The Digital Frontier," NBER Chapters, in: Economic Analysis of the Digital Economy, pages 191-218, National Bureau of Economic Research, Inc.
    5. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    6. Bart J. Bronnenberg & Jean-Pierre H. Dube & Matthew Gentzkow, 2012. "The Evolution of Brand Preferences: Evidence from Consumer Migration," American Economic Review, American Economic Association, vol. 102(6), pages 2472-2508, October.
    7. Griliches, Zvi & Hausman, Jerry A., 1986. "Errors in variables in panel data," Journal of Econometrics, Elsevier, vol. 31(1), pages 93-118, February.
    8. Avi Goldfarb & Catherine Tucker, 2011. "Rejoinder--Implications of "Online Display Advertising: Targeting and Obtrusiveness"," Marketing Science, INFORMS, vol. 30(3), pages 413-415, 05-06.
    9. Susan Athey & Guido W. Imbens, 2006. "Identification and Inference in Nonlinear Difference-in-Differences Models," Econometrica, Econometric Society, vol. 74(2), pages 431-497, March.
    10. Chris Forman & Anindya Ghose & Avi Goldfarb, 2009. "Competition Between Local and Electronic Markets: How the Benefit of Buying Online Depends on Where You Live," Management Science, INFORMS, vol. 55(1), pages 47-57, January.
    11. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    12. Mingyu Joo & Kenneth C. Wilbur & Bo Cowgill & Yi Zhu, 2014. "Television Advertising and Online Search," Management Science, INFORMS, vol. 60(1), pages 56-73, January.
    13. Oliver Rutz & Randolph Bucklin, 2012. "Does banner advertising affect browsing for brands? clickstream choice model says yes, for some," Quantitative Marketing and Economics (QME), Springer, vol. 10(2), pages 231-257, June.
    14. Hollis, Nigel, 2005. "Ten Years of Learning on How Online Advertising Builds Brands," Journal of Advertising Research, Cambridge University Press, vol. 45(2), pages 255-268, June.
    15. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    16. Lizhen Xu & Jason A. Duan & Andrew Whinston, 2014. "Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion," Management Science, INFORMS, vol. 60(6), pages 1392-1412, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lukáš Kakalejč & Jozef Bucko & Paulo A. A. Resende & Martina Ferencova, 2018. "Multichannel Marketing Attribution Using Markov Chains," Journal of Applied Management and Investments, Department of Business Administration and Corporate Security, International Humanitarian University, vol. 7(1), pages 49-60, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chad D. Meyerhoefer & Muzhe Yang, 2011. "The Relationship between Food Assistance and Health: A Review of the Literature and Empirical Strategies for Identifying Program Effects," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 33(3), pages 304-344.
    2. Naureen Fatema & Shahriar Kibriya, 2018. "Givers of great dinners know few enemies: The impact of household food sufficiency and food sharing on low intensity interhousehold and community conflict in Eastern Democratic Republic of Congo," HiCN Working Papers 267, Households in Conflict Network.
    3. Mason, Nicole M. & Wineman, Ayala & Kirimi, Lilian & Mather, David, 2016. "The Effects of Kenya’s ‘Smarter’ Input Subsidy Program on Smallholder Behavior and Incomes: Do Different Quasi-Experimental Approaches Lead to the Same Conclusions?," Food Security Collaborative Working Papers 232090, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    4. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    5. Guitart, Ivan A. & Hervet, Guillaume, 2017. "The impact of contextual television ads on online conversions: An application in the insurance industry," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 480-498.
    6. Jason Abrevaya & Yu-Chin Hsu & Robert P. Lieli, 2015. "Estimating Conditional Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 485-505, October.
    7. Andrea Albanese & Bart Cockx, 2015. "Permanent Wage Cost Subsidies For Older Workers. An Effective Tool For Increasing Working Time And Postponing Early Retirement?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 15/902, Ghent University, Faculty of Economics and Business Administration.
    8. Vilma Todri, 2022. "Frontiers: The Impact of Ad-Blockers on Online Consumer Behavior," Marketing Science, INFORMS, vol. 41(1), pages 7-18, January.
    9. Mirella Damiani & Fabrizio Pompei & Andrea Ricci, 2020. "Opting Out, Collective Contracts and Labour Flexibility: Firm‐Level Evidence for The Italian Case," British Journal of Industrial Relations, London School of Economics, vol. 58(3), pages 558-586, September.
    10. Simon Ress & Florian Spohr, 2022. "Was it worth it? The impact of the German minimum wage on union membership of employees," Economic and Industrial Democracy, Department of Economic History, Uppsala University, Sweden, vol. 43(4), pages 1699-1723, November.
    11. Giulia Bettin & Isabella Giorgetti & Stefano Staffolani, 2024. "The impact of Covid-19 lockdown on the gender gap in the Italian labour market," Review of Economics of the Household, Springer, vol. 22(1), pages 1-33, March.
    12. Zeqin Liu & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Statistical Analysis and Evaluation of Macroeconomic Policies: A Selective Review," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201904, University of Kansas, Department of Economics, revised Mar 2019.
    13. Seshadri Tirunillai & Gerard J. Tellis, 2017. "Does Offline TV Advertising Affect Online Chatter? Quasi-Experimental Analysis Using Synthetic Control," Marketing Science, INFORMS, vol. 36(6), pages 862-878, November.
    14. Peitz, Martin & Reisinger, Markus, 2014. "The Economics of Internet Media," Working Papers 14-23, University of Mannheim, Department of Economics.
    15. Brantly Callaway & Weige Huang, 2020. "Distributional Effects of a Continuous Treatment with an Application on Intergenerational Mobility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(4), pages 808-842, August.
    16. Kannan, P.K. & Li, Hongshuang “Alice”, 2017. "Digital marketing: A framework, review and research agenda," International Journal of Research in Marketing, Elsevier, vol. 34(1), pages 22-45.
    17. Nicole M. Mason & Ayala Wineman & Lilian Kirimi & David Mather, 2017. "The Effects of Kenya's ‘Smarter’ Input Subsidy Programme on Smallholder Behaviour and Incomes: Do Different Quasi-experimental Approaches Lead to the Same Conclusions?," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(1), pages 45-69, February.
    18. Shun-Yang Lee & Julian Runge & Daniel Yoo & Yakov Bart & Anett Gyurak & J. W. Schneider, 2023. "COVID-19 Demand Shocks Revisited: Did Advertising Technology Help Mitigate Adverse Consequences for Small and Midsize Businesses?," Papers 2307.09035, arXiv.org, revised Jan 2024.
    19. Randall Lewis & Dan Nguyen, 2015. "Display advertising’s competitive spillovers to consumer search," Quantitative Marketing and Economics (QME), Springer, vol. 13(2), pages 93-115, June.
    20. Fatema, Naureen, 2019. "Can land title reduce low-intensity interhousehold conflict incidences and associated damages in eastern DRC?," World Development, Elsevier, vol. 123(C), pages 1-1.

    More about this item

    Keywords

    Online Advertising; Big Data; Analytics; Display Advertising; Advertising Effectiveness; Digital Attribution; Natural Experiment;
    All these keywords.

    JEL classification:

    • L86 - Industrial Organization - - Industry Studies: Services - - - Information and Internet Services; Computer Software
    • M37 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Advertising

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:net:wpaper:1515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nicholas Economides (email available below). General contact details of provider: http://www.NETinst.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.