IDEAS home Printed from https://ideas.repec.org/p/net/wpaper/1301.html
   My bibliography  Save this paper

Preferences, Homophily, and Social Learning

Author

Listed:
  • Ilan Lobel

    (New York University Stern School of Business)

  • Evan Sadler

    (New York University Stern School of Business)

Abstract

We study a model of social learning in networks where agents have heterogeneous preferences, and neighbors tend to have similar preferences---a phenomenon known as homophily. Using this model, we resolve a puzzle in the literature: theoretical models predict that preference diversity helps learning, and homophily slows learning, while empirical work suggests the opposite. We find that the density of network connections determines the impact of preference diversity and homophily on learning. When connections are sparse, diverse preferences are harmful to learning, and homophily may lead to substantial improvements. In a dense network, preference diversity is beneficial. The conflicting findings in prior work result from a focus on networks with different densities; theory has focused on dense networks, while empirical papers have studied sparse networks. Our results suggest that in complex networks containing both sparse and dense components, diverse preferences and homophily play complementary, beneficial roles.

Suggested Citation

  • Ilan Lobel & Evan Sadler, 2013. "Preferences, Homophily, and Social Learning," Working Papers 13-01, NET Institute.
  • Handle: RePEc:net:wpaper:1301
    as

    Download full text from publisher

    File URL: http://www.netinst.org/Lobel_Sadler_13-01.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Venkatesh Bala & Sanjeev Goyal, 1998. "Learning from Neighbours," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 595-621.
    2. Guarino, Antonio & Ianni, Antonella, 2010. "Social learning with local interactions," Discussion Paper Series In Economics And Econometrics 1011, Economics Division, School of Social Sciences, University of Southampton.
    3. Sergio Currarini & Matthew O. Jackson & Paolo Pin, 2009. "An Economic Model of Friendship: Homophily, Minorities, and Segregation," Econometrica, Econometric Society, vol. 77(4), pages 1003-1045, July.
    4. Daron Acemoglu & Munther A. Dahleh & Ilan Lobel & Asuman Ozdaglar, 2011. "Bayesian Learning in Social Networks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(4), pages 1201-1236.
    5. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    6. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    7. Benjamin Golub & Matthew O. Jackson, 2012. "How Homophily Affects the Speed of Learning and Best-Response Dynamics," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(3), pages 1287-1338.
    8. Celen, Bogachan & Kariv, Shachar, 2004. "Observational learning under imperfect information," Games and Economic Behavior, Elsevier, vol. 47(1), pages 72-86, April.
    9. Timothy G. Conley & Christopher R. Udry, 2010. "Learning about a New Technology: Pineapple in Ghana," American Economic Review, American Economic Association, vol. 100(1), pages 35-69, March.
    10. Gale, Douglas & Kariv, Shachar, 2003. "Bayesian learning in social networks," Games and Economic Behavior, Elsevier, vol. 45(2), pages 329-346, November.
    11. Antonio Guarino & Antonella Ianni, 2010. "Bayesian Social Learning with Local Interactions," Games, MDPI, vol. 1(4), pages 1-21, October.
    12. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    13. ,, 2013. "A general framework for rational learning in social networks," Theoretical Economics, Econometric Society, vol. 8(1), January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Polanski, Arnold & Vega-Redondo, Fernando, 2023. "Homophily and influence," Journal of Economic Theory, Elsevier, vol. 207(C).
    2. Tsionas, Mike G. & Philippas, Dionisis & Philippas, Nikolaos, 2022. "Multivariate stochastic volatility for herding detection: Evidence from the energy sector," Energy Economics, Elsevier, vol. 109(C).
    3. Mueller-Frank, Manuel & Arieliy, Itai, 2015. "Social Learning and the Vanishing Value of Private Information," IESE Research Papers D/1119, IESE Business School.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilan Lobel & Evan Sadler, 2016. "Preferences, Homophily, and Social Learning," Operations Research, INFORMS, vol. 64(3), pages 564-584, June.
    2. Pooya Molavi & Ceyhun Eksin & Alejandro Ribeiro & Ali Jadbabaie, 2016. "Learning to Coordinate in Social Networks," Operations Research, INFORMS, vol. 64(3), pages 605-621, June.
    3. , & ,, 2015. "Information diffusion in networks through social learning," Theoretical Economics, Econometric Society, vol. 10(3), September.
    4. Syngjoo Choi & Edoardo Gallo & Shachar Kariv, 2015. "Networks in the laboratory," Cambridge Working Papers in Economics 1551, Faculty of Economics, University of Cambridge.
    5. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    6. Vivi Alatas & Abhijit Banerjee & Arun G. Chandrasekhar & Rema Hanna & Benjamin A. Olken, 2016. "Network Structure and the Aggregation of Information: Theory and Evidence from Indonesia," American Economic Review, American Economic Association, vol. 106(7), pages 1663-1704, July.
    7. James C. D. Fisher & John Wooders, 2017. "Interacting information cascades: on the movement of conventions between groups," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(1), pages 211-231, January.
    8. Li, Wei & Tan, Xu, 2021. "Cognitively-constrained learning from neighbors," Games and Economic Behavior, Elsevier, vol. 129(C), pages 32-54.
    9. Ding, Huihui & Pivato, Marcus, 2021. "Deliberation and epistemic democracy," Journal of Economic Behavior & Organization, Elsevier, vol. 185(C), pages 138-167.
    10. Markus Mobius & Tuan Phan & Adam Szeidl, 2015. "Treasure Hunt: Social Learning in the Field," CEU Working Papers 2015_2, Department of Economics, Central European University.
    11. Dasaratha, Krishna & He, Kevin, 2020. "Network structure and naive sequential learning," Theoretical Economics, Econometric Society, vol. 15(2), May.
    12. Battiston, Pietro & Stanca, Luca, 2015. "Boundedly rational opinion dynamics in social networks: Does indegree matter?," Journal of Economic Behavior & Organization, Elsevier, vol. 119(C), pages 400-421.
    13. Comola, Margherita & Rusinowska, Agnieszka & Villeval, Marie Claire, 2024. "Competing for Influence in Networks through Strategic Targeting," IZA Discussion Papers 17315, Institute of Labor Economics (IZA).
    14. , & , & ,, 2014. "Dynamics of information exchange in endogenous social networks," Theoretical Economics, Econometric Society, vol. 9(1), January.
    15. Acemoglu, Daron & Ozdaglar, Asuman & ParandehGheibi, Ali, 2010. "Spread of (mis)information in social networks," Games and Economic Behavior, Elsevier, vol. 70(2), pages 194-227, November.
    16. Sanjeev Goyal, 2015. "Networks in Economics: A Perspective on the Literature," Cambridge Working Papers in Economics 1548, Faculty of Economics, University of Cambridge.
    17. Matthew O. Jackson & Brian W. Rogers & Yves Zenou, 2016. "Networks: An Economic Perspective," Papers 1608.07901, arXiv.org.
    18. Margherita Comola & Agnieszka Rusinowska & Marie Claire Villeval, 2024. "Competing for Influence in Networks Through Strategic Targeting [En compétition pour l'influence dans les réseaux grâce au ciblage stratégique]," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04706311, HAL.
    19. Elchanan Mossel & Allan Sly & Omer Tamuz, 2015. "Strategic Learning and the Topology of Social Networks," Econometrica, Econometric Society, vol. 83(5), pages 1755-1794, September.
    20. Mueller-Frank, Manuel & Arieliy, Itai, 2015. "A General Model of Boundedly Rational Observational Learning: Theory and Experiment," IESE Research Papers D/1120, IESE Business School.

    More about this item

    Keywords

    Social Networks; Learning; Homophily;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:net:wpaper:1301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nicholas Economides (email available below). General contact details of provider: http://www.NETinst.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.