IDEAS home Printed from https://ideas.repec.org/p/net/wpaper/1129.html
   My bibliography  Save this paper

Assessing Value in Product Networks

Author

Abstract

Traditionally, the value of a product has been assessed according to the direct revenues the product creates. However, products do not exist in isolation but rather influence one another's sales. Such influence is especially evident in eCommerce environments, where products are often presented as a collection of webpages linked by recommendation hyperlinks, creating a large-scale product network. Here we present the first attempt to use a systematic approach to estimate products' true value to a firm in such a product network. Our approach, which is in the spirit of the PageRank algorithm, uses easily available data from large-scale electronic commerce sites and separates a product’s value into its own intrinsic value, the value it receives from the network, and the value it contributes to the network. We apply this approach to data collected from Amazon.com and from BarnesAndNoble.com. Focusing on one domain of interest, we find that if products are evaluated according to their direct revenue alone, without taking their network value into account, the true value of the "long tail" of electronic commerce may be underestimated, whereas that of bestsellers might be overestimated.

Suggested Citation

  • Gal OEstreicher-Singer & Barak Libai, 2011. "Assessing Value in Product Networks," Working Papers 11-29, NET Institute, revised Sep 2011.
  • Handle: RePEc:net:wpaper:1129
    as

    Download full text from publisher

    File URL: http://www.netinst.org/Carmi_Libai_11_29.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gérard P. Cachon & Christian Terwiesch & Yi Xu, 2008. "On the Effects of Consumer Search and Firm Entry in a Multiproduct Competitive Market," Marketing Science, INFORMS, vol. 27(3), pages 461-473, 05-06.
    2. Tucker, Catherine & Zhang, Juanjuan, 2007. "Long Tail or Steep Tail? A Field Investigation into How Online Popularity Information Affects the Distribution of Customer Choices," Working papers 39811, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    3. Daniel Fleder & Kartik Hosanagar, 2009. "Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity," Management Science, INFORMS, vol. 55(5), pages 697-712, May.
    4. Xavier Gabaix & Rustam Ibragimov, 2011. "Rank - 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 24-39, January.
    5. Erik Brynjolfsson & Yu (Jeffrey) Hu & Mohammad S. Rahman, 2009. "Battle of the Retail Channels: How Product Selection and Geography Drive Cross-Channel Competition," Management Science, INFORMS, vol. 55(11), pages 1755-1765, November.
    6. Hinz, Oliver & Eckert, Jochen & Skiera, Bernd, 2011. "Drivers of the Long Tail Phenomenon: An Empirical Analysis," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 56544, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Charles F. Manski, 2000. "Economic Analysis of Social Interactions," Journal of Economic Perspectives, American Economic Association, vol. 14(3), pages 115-136, Summer.
    8. Erik Brynjolfsson & Yu (Jeffrey) Hu & Michael D. Smith, 2003. "Consumer Surplus in the Digital Economy: Estimating the Value of Increased Product Variety at Online Booksellers," Management Science, INFORMS, vol. 49(11), pages 1580-1596, November.
    9. Wendy W. Moe & Peter S. Fader, 2004. "Dynamic Conversion Behavior at E-Commerce Sites," Management Science, INFORMS, vol. 50(3), pages 326-335, March.
    10. Zsolt Katona & Miklos Sarvary, 2008. "Network Formation and the Structure of the Commercial World Wide Web," Marketing Science, INFORMS, vol. 27(5), pages 764-778, 09-10.
    11. Michaela Draganska & Michael Mazzeo & Katja Seim, 2009. "Beyond plain vanilla: Modeling joint product assortment and pricing decisions," Quantitative Marketing and Economics (QME), Springer, vol. 7(2), pages 105-146, June.
    12. Andres Hervas-Drane, 2007. "Word of Mouth and Taste Matching: A Theory of the Long Tail," Working Papers 07-41, NET Institute, revised Jan 2009.
    13. Chrysanthos Dellarocas & Zsolt Katona & William Rand, 2010. "Media, Aggregators and the Link Economy: Strategic Hyperlink Formation in Content Networks," Working Papers 10-13, NET Institute.
    14. James D. Hess & Eitan Gerstner, 1987. "Loss Leader Pricing and Rain Check Policy," Marketing Science, INFORMS, vol. 6(4), pages 358-374.
    15. De los Santos, Babur, 2018. "Consumer search on the Internet," International Journal of Industrial Organization, Elsevier, vol. 58(C), pages 66-105.
    16. Hinz, Oliver & Eckert, Jochen & Skiera, Bernd, 2011. "Drivers of the Long Tail Phenomenon: An Empirical Analysis, Journal of Management Information Systems (JMIS), 27 (4), 43-69," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63391, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    17. S. Sriram & Pradeep K. Chintagunta & Manoj K. Agarwal, 2010. "Investigating Consumer Purchase Behavior in Related Technology Product Categories," Marketing Science, INFORMS, vol. 29(2), pages 291-314, 03-04.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Hefti & Julia Lareida, 2021. "Competitive attention, Superstars and the Long Tail," ECON - Working Papers 383, Department of Economics - University of Zurich.
    2. Yinbo Feng & Ming Hu, 2017. "Blockbuster or Niche? Competitive Strategy under Network Effects," Working Papers 17-13, NET Institute.
    3. Gal Oestreicher-Singer & Arun Sundararajan, 2012. "The Visible Hand? Demand Effects of Recommendation Networks in Electronic Markets," Management Science, INFORMS, vol. 58(11), pages 1963-1981, November.
    4. Erik Brynjolfsson & Yu (Jeffrey) Hu & Michael D. Smith, 2010. "Research Commentary --- Long Tails vs. Superstars: The Effect of Information Technology on Product Variety and Sales Concentration Patterns," Information Systems Research, INFORMS, vol. 21(4), pages 736-747, December.
    5. Erik Brynjolfsson & Yu (Jeffrey) Hu & Duncan Simester, 2011. "Goodbye Pareto Principle, Hello Long Tail: The Effect of Search Costs on the Concentration of Product Sales," Management Science, INFORMS, vol. 57(8), pages 1373-1386, August.
    6. Hoskins, Jake D., 2020. "The evolving role of hit and niche products in brick-and-mortar retail category assortment planning: A large-scale empirical investigation of U.S. consumer packaged goods," Journal of Retailing and Consumer Services, Elsevier, vol. 57(C).
    7. Heski Bar-Isaac & Guillermo Caruana & Vicente Cunat, 2012. "Search, Design, and Market Structure," American Economic Review, American Economic Association, vol. 102(2), pages 1140-1160, April.
    8. Nishtha Langer & Chris Forman & Sunder Kekre & Baohong Sun, 2012. "Ushering Buyers into Electronic Channels: An Empirical Analysis," Information Systems Research, INFORMS, vol. 23(4), pages 1212-1231, December.
    9. Yongjin Park & Youngsok Bang & Jae-Hyeon Ahn, 2020. "How Does the Mobile Channel Reshape the Sales Distribution in E-Commerce?," Information Systems Research, INFORMS, vol. 31(4), pages 1164-1182, December.
    10. Santiago Gallino & Antonio Moreno & Ioannis Stamatopoulos, 2017. "Channel Integration, Sales Dispersion, and Inventory Management," Management Science, INFORMS, vol. 63(9), pages 2813-2831, September.
    11. Ratchford, Brian & Soysal, Gonca & Zentner, Alejandro & Gauri, Dinesh K., 2022. "Online and offline retailing: What we know and directions for future research," Journal of Retailing, Elsevier, vol. 98(1), pages 152-177.
    12. Tobias Kretschmer & Christian Peukert, 2020. "Video Killed the Radio Star? Online Music Videos and Recorded Music Sales," Information Systems Research, INFORMS, vol. 31(3), pages 776-800, September.
    13. Qian Tang & Mei Lin & Youngsoo Kim, 2021. "Inter‐Retailer Channel Competition: Empirical Analyses of Store Entry Effects on Online Purchases," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2547-2563, August.
    14. Tom Fangyun Tan & Serguei Netessine & Lorin Hitt, 2017. "Is Tom Cruise Threatened? An Empirical Study of the Impact of Product Variety on Demand Concentration," Information Systems Research, INFORMS, vol. 28(3), pages 643-660, September.
    15. Alejandro Zentner & Michael Smith & Cuneyd Kaya, 2013. "How Video Rental Patterns Change as Consumers Move Online," Management Science, INFORMS, vol. 59(11), pages 2622-2634, November.
    16. Kaiquan Xu & Jason Chan & Anindya Ghose & Sang Pil Han, 2017. "Battle of the Channels: The Impact of Tablets on Digital Commerce," Management Science, INFORMS, vol. 63(5), pages 1469-1492, May.
    17. Miguel Godinho de Matos & Pedro Ferreira, 2020. "The Effect of Binge-Watching on the Subscription of Video on Demand: Results from Randomized Experiments," Information Systems Research, INFORMS, vol. 31(4), pages 1337-1360, December.
    18. Ting Li & Robert J. Kauffman & Eric van Heck & Peter Vervest & Benedict G. C. Dellaert, 2014. "Consumer Informedness and Firm Information Strategy," Information Systems Research, INFORMS, vol. 25(2), pages 345-363, June.
    19. Peter Buxmann & Oliver Hinz, 2013. "Makers," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 5(5), pages 357-360, October.
    20. Jeffrey D. Shulman, 2014. "Product Diversion to a Direct Competitor," Marketing Science, INFORMS, vol. 33(3), pages 422-436, May.

    More about this item

    Keywords

    networks; product networks; electronic commerce; ecommerce; recommender systems; long tail;
    All these keywords.

    JEL classification:

    • D4 - Microeconomics - - Market Structure, Pricing, and Design

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:net:wpaper:1129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nicholas Economides (email available below). General contact details of provider: http://www.NETinst.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.