IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/32927.html
   My bibliography  Save this paper

Instrumental Variables with Unobserved Heterogeneity in Treatment Effects

Author

Listed:
  • Magne Mogstad
  • Alexander Torgovitsky

Abstract

This chapter synthesizes and critically reviews the modern instrumental variables (IV) literature that allows for unobserved heterogeneity in treatment effects (UHTE). We start by discussing why UHTE is often an essential aspect of IV applications in economics and we explain the conceptual challenges raised by allowing for it. Then we review and survey two general strategies for incorporating UHTE. The first strategy is to continue to use linear IV estimators designed for classical constant (homogeneous) treatment effect models, acknowledge their likely misspecification, and attempt to reverse engineer an attractive interpretation in the presence of UHTE. This strategy commonly leads to interpretations of linear IV that involve local average treatment effects (LATEs). We review the various ways in which the use and justification of LATE interpretations have expanded and contracted since their introduction in the early 1990s. The second strategy is to forward engineer new estimators that explicitly allow for UHTE. This strategy has its roots in the Gronau-Heckman selection model of the 1970s, ideas from which have been revitalized through marginal treatment effect (MTE) analysis. We discuss implementation of MTE methods and draw connections with related control function and bounding methods that are scattered throughout the econometric and causal inference literature.

Suggested Citation

  • Magne Mogstad & Alexander Torgovitsky, 2024. "Instrumental Variables with Unobserved Heterogeneity in Treatment Effects," NBER Working Papers 32927, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:32927
    Note: LS TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w32927.pdf
    Download Restriction: Access to the full text is generally limited to series subscribers, however if the top level domain of the client browser is in a developing country or transition economy free access is provided. More information about subscriptions and free access is available at http://www.nber.org/wwphelp.html. Free access is also available to older working papers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. J. P. Florens & J. J. Heckman & C. Meghir & E. Vytlacil, 2008. "Identification of Treatment Effects Using Control Functions in Models With Continuous, Endogenous Treatment and Heterogeneous Effects," Econometrica, Econometric Society, vol. 76(5), pages 1191-1206, September.
    2. Flavio Cunha & James J. Heckman & Salvador Navarro, 2007. "The Identification And Economic Content Of Ordered Choice Models With Stochastic Thresholds," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1273-1309, November.
    3. Flavio Cunha & James J. Heckman & Salvador Navarro, 2007. "The Identification & Economic Content of Ordered Choice Models with Stochastic Thresholds," Working Papers 200726, Geary Institute, University College Dublin.
    4. Garen, John, 1984. "The Returns to Schooling: A Selectivity Bias Approach with a Continuous Choice Variable," Econometrica, Econometric Society, vol. 52(5), pages 1199-1218, September.
    5. E. Jason Baron & Max Gross, 2022. "Is There a Foster Care-To-Prison Pipeline? Evidence from Quasi-Randomly Assigned Investigators," NBER Working Papers 29922, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuehao Bai & Max Tabord-Meehan, 2024. "Sharp Testable Implications of Encouragement Designs," Papers 2411.09808, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Junlong, 2024. "Matching points: Supplementing instruments with covariates in triangular models," Journal of Econometrics, Elsevier, vol. 238(1).
    2. William H. Greene & David A. Hensher, 2008. "Modeling Ordered Choices: A Primer and Recent Developments," Working Papers 08-26, New York University, Leonard N. Stern School of Business, Department of Economics.
    3. Victor Chernozhukov & Iván Fernández‐Val & Whitney Newey & Sami Stouli & Francis Vella, 2020. "Semiparametric estimation of structural functions in nonseparable triangular models," Quantitative Economics, Econometric Society, vol. 11(2), pages 503-533, May.
    4. Stefan Hoderlein & Yuya Sasaki, 2013. "Outcome conditioned treatment effects," CeMMAP working papers CWP39/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Corrado, L. & Weeks, M., 2010. "Identification Strategies in Survey Response Using Vignettes," Cambridge Working Papers in Economics 1031, Faculty of Economics, University of Cambridge.
    6. Dionissi Aliprantis, 2017. "Human capital in the inner city," Empirical Economics, Springer, vol. 53(3), pages 1125-1169, November.
    7. Philipp Eisenhauer & James J. Heckman & Stefano Mosso, 2015. "Estimation Of Dynamic Discrete Choice Models By Maximum Likelihood And The Simulated Method Of Moments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(2), pages 331-357, May.
    8. Orazio P. Attanasio & Costas Meghir & Ana Santiago, 2012. "Education Choices in Mexico: Using a Structural Model and a Randomized Experiment to Evaluate PROGRESA," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(1), pages 37-66.
    9. Heckman, James J. & Urzúa, Sergio, 2010. "Comparing IV with structural models: What simple IV can and cannot identify," Journal of Econometrics, Elsevier, vol. 156(1), pages 27-37, May.
    10. Chen, Le-Yu & Oparina, Ekaterina & Powdthavee, Nattavudh & Srisuma, Sorawoot, 2022. "Robust Ranking of Happiness Outcomes: A Median Regression Perspective," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 672-686.
    11. Stefan Boes, 2009. "Partial Identification of Discrete Counterfactual Distributions with Sequential Update of Information," SOI - Working Papers 0918, Socioeconomic Institute - University of Zurich.
    12. Franco Peracchi & Claudio Rossetti, 2013. "The heterogeneous thresholds ordered response model: identification and inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 703-722, June.
    13. Jane Cooley Fruehwirth & Salvador Navarro & Yuya Takahashi, 2016. "How the Timing of Grade Retention Affects Outcomes: Identification and Estimation of Time-Varying Treatment Effects," Journal of Labor Economics, University of Chicago Press, vol. 34(4), pages 979-1021.
    14. Jaap H. Abbring, 2010. "Identification of Dynamic Discrete Choice Models," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 367-394, September.
    15. Han, Sukjin, 2021. "Identification in nonparametric models for dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 132-147.
    16. Jaap Abbring & James Heckman, 2008. "Dynamic policy analysis," CeMMAP working papers CWP05/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Bhuller, Manudeep & Sigstad, Henrik, 2024. "2SLS with multiple treatments," Journal of Econometrics, Elsevier, vol. 242(1).
    18. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    19. Powdthavee, Nattavudh, 2009. "Ill-health as a household norm: Evidence from other people's health problems," Social Science & Medicine, Elsevier, vol. 68(2), pages 251-259, January.
    20. Apesteguia, Jose & Ballester, Miguel A., 2023. "Random utility models with ordered types and domains," Journal of Economic Theory, Elsevier, vol. 211(C).

    More about this item

    JEL classification:

    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:32927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.