IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/29002.html
   My bibliography  Save this paper

Test Assets and Weak Factors

Author

Listed:
  • Stefano Giglio
  • Dacheng Xiu
  • Dake Zhang

Abstract

Estimation and testing of factor models in asset pricing requires choosing a set of test assets. The choice of test assets determines how well different factor risk premia can be identified: if only few assets are exposed to a factor, that factor is weak, which makes standard estimation and inference incorrect. In other words, the strength of a factor is not an inherent property of the factor: it is a property of the cross-section used in the analysis. We propose a novel way to select assets from a universe of test assets and estimate the risk premium of a factor of interest, as well as the entire stochastic discount factor, that explicitly accounts for weak factors and test assets with highly correlated risk exposures. We refer to our methodology as supervised principal component analysis (SPCA), because it iterates an asset selection step and a principal-component estimation step. We provide the asymptotic properties of our estimator, and compare its limiting behavior with that of alternative estimators proposed in the recent literature, which rely on PCA, Ridge, Lasso, and Partial Least Squares (PLS). We find that the SPCA is superior in the presence of weak factors, both in theory and in finite samples. We illustrate the use of SPCA by applying it to estimate the risk premia of several tradable and nontradable factors, to evaluate asset managers’ performance, and to de-noise asset pricing factors.

Suggested Citation

  • Stefano Giglio & Dacheng Xiu & Dake Zhang, 2021. "Test Assets and Weak Factors," NBER Working Papers 29002, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:29002
    Note: AP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w29002.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Svetlana Bryzgalova & Jiantao Huang & Christian Julliard, 2023. "Bayesian Solutions for the Factor Zoo: We Just Ran Two Quadrillion Models," Journal of Finance, American Finance Association, vol. 78(1), pages 487-557, February.
    2. Jianqing Fan & Yuling Yan & Yuheng Zheng, 2024. "When can weak latent factors be statistically inferred?," Papers 2407.03616, arXiv.org, revised Sep 2024.
    3. Tédongap, Roméo & Tinang, Jules, 2024. "International asset pricing with heterogeneous agents: Estimation and inference," Journal of Empirical Finance, Elsevier, vol. 75(C).
    4. Jungjun Choi & Ming Yuan, 2024. "High Dimensional Factor Analysis with Weak Factors," Papers 2402.05789, arXiv.org.
    5. Huang, Dashan & Jiang, Fuwei & Li, Kunpeng & Tong, Guoshi & Zhou, Guofu, 2023. "Are bond returns predictable with real-time macro data?," Journal of Econometrics, Elsevier, vol. 237(2).
    6. Jozef Barunik & Matej Nevrla, 2022. "Common Idiosyncratic Quantile Risk," Papers 2208.14267, arXiv.org, revised Nov 2024.
    7. Cisil Sarisoy & Bas J.M. Werker, 2024. "Linear Factor Models and the Estimation of Expected Returns," Finance and Economics Discussion Series 2024-014, Board of Governors of the Federal Reserve System (U.S.).
    8. Croce, Mariano M. & Marchuk, Tatyana & Schlag, Christian, 2022. "The leading premium," SAFE Working Paper Series 371, Leibniz Institute for Financial Research SAFE.
    9. Lioui, Abraham & Tarelli, Andrea, 2022. "Chasing the ESG factor," Journal of Banking & Finance, Elsevier, vol. 139(C).

    More about this item

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:29002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.