IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/26750.html
   My bibliography  Save this paper

An Exploration of Trend-Cycle Decomposition Methodologies in Simulated Data

Author

Listed:
  • Robert J. Hodrick

Abstract

This paper uses simulations to explore the properties of the HP filter of Hodrick and Prescott (1997), the BK filter of Baxter and King (1999), and the H filter of Hamilton (2018) that are designed to decompose a univariate time series into trend and cyclical components. Each simulated time series approximates the natural logarithms of U.S. Real GDP, and they are a random walk, an ARIMA model, two unobserved components models, and models with slowly changing nonstationary stochastic trends and definitive cyclical components. In basic time series, the H filter dominates the HP and BK filters in more closely characterizing the underlying framework, but in more complex models, the reverse is true.

Suggested Citation

  • Robert J. Hodrick, 2020. "An Exploration of Trend-Cycle Decomposition Methodologies in Simulated Data," NBER Working Papers 26750, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:26750
    Note: EFG
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w26750.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    2. Nelson, Charles R & Kang, Heejoon, 1981. "Spurious Periodicity in Inappropriately Detrended Time Series," Econometrica, Econometric Society, vol. 49(3), pages 741-751, May.
    3. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    4. Congressional Budget Office, 2015. "Why CBO Projects That Actual Output Will Be Below Potential Output on Average," Reports 49890, Congressional Budget Office.
    5. Cochrane, John H, 1988. "How Big Is the Random Walk in GNP?," Journal of Political Economy, University of Chicago Press, vol. 96(5), pages 893-920, October.
    6. John Y. Campbell & N. Gregory Mankiw, 1987. "Are Output Fluctuations Transitory?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(4), pages 857-880.
    7. Harvey, A C & Jaeger, A, 1993. "Detrending, Stylized Facts and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(3), pages 231-247, July-Sept.
    8. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1, June.
    9. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    10. Congressional Budget Office, 2015. "Why CBO Projects That Actual Output Will Be Below Potential Output on Average," Reports 49890, Congressional Budget Office.
    11. Stock, James H. & Watson, Mark W., 1999. "Business cycle fluctuations in us macroeconomic time series," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 1, pages 3-64, Elsevier.
    12. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    13. James C. Morley & Charles R. Nelson & Eric Zivot, 2003. "Why Are the Beveridge-Nelson and Unobserved-Components Decompositions of GDP So Different?," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 235-243, May.
    14. den Haan, Wouter J., 2000. "The comovement between output and prices," Journal of Monetary Economics, Elsevier, vol. 46(1), pages 3-30, August.
    15. James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
    16. John G. Fernald & Robert E. Hall & James H. Stock & Mark W. Watson, 2017. "The Disappointing Recovery of Output after 2009," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 48(1 (Spring), pages 1-81.
    17. Harvey, A C, 1985. "Trends and Cycles in Macroeconomic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(3), pages 216-227, June.
    18. King, Robert G. & Rebelo, Sergio T., 1993. "Low frequency filtering and real business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 17(1-2), pages 207-231.
    19. Watson, Mark W., 1986. "Univariate detrending methods with stochastic trends," Journal of Monetary Economics, Elsevier, vol. 18(1), pages 49-75, July.
    20. Peter K. Clark, 1987. "The Cyclical Component of U. S. Economic Activity," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(4), pages 797-814.
    21. Robert Shackleton, 2018. "Estimating and Projecting Potential Output Using CBO’s Forecasting Growth Model: Working Paper 2018-03," Working Papers 53558, Congressional Budget Office.
    22. Cogley, Timothy & Nason, James M., 1995. "Effects of the Hodrick-Prescott filter on trend and difference stationary time series Implications for business cycle research," Journal of Economic Dynamics and Control, Elsevier, vol. 19(1-2), pages 253-278.
    23. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    24. Congressional Budget Office, 2015. "Why CBO Projects That Actual Output Will Be Below Potential Output on Average," Reports 49890, Congressional Budget Office.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ángel Guillén & Gabriel Rodríguez, 2014. "Trend-cycle decomposition for Peruvian GDP: application of an alternative method," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 23(1), pages 1-44, December.
    2. Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.
    3. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
    4. Álvarez, Luis J. & Gómez-Loscos, Ana, 2018. "A menu on output gap estimation methods," Journal of Policy Modeling, Elsevier, vol. 40(4), pages 827-850.
    5. Yýlmaz Akdi & Serdar Varlik & Hakan Berument, 2018. "Cycle Duration in Production with Periodicity – Evidence from Turkey," International Econometric Review (IER), Econometric Research Association, vol. 10(2), pages 24-32, September.
    6. Viv B. Hall & Peter Thomson, 2022. "A boosted HP filter for business cycle analysis:evidence from New Zealand's small open economy," CAMA Working Papers 2022-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    7. Everts, Martin, 2006. "Duration of Business Cycles," MPRA Paper 1219, University Library of Munich, Germany.
    8. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    9. Ai Deng & Pierre Perron, 2006. "A comparison of alternative asymptotic frameworks to analyse a structural change in a linear time trend," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 423-447, November.
    10. Guisinger, Amy Y. & Hernandez-Murillo, Ruben & Owyang, Michael T. & Sinclair, Tara M., 2018. "A state-level analysis of Okun's law," Regional Science and Urban Economics, Elsevier, vol. 68(C), pages 239-248.
    11. Rodríguez, Gabriel, 2010. "Using A Forward-Looking Phillips Curve to Estimate the Output Gap in Peru," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 6(1-2), pages 1-13, April.
    12. Tatsuma Wada & Pierre Perron, 2005. "Trend and Cycles: A New Approach and Explanations of Some Old Puzzles," Computing in Economics and Finance 2005 252, Society for Computational Economics.
    13. Willie Lahari, 2011. "Assessing Business Cycle Synchronisation - Prospects for a Pacific Islands Currency Union," Working Papers 1110, University of Otago, Department of Economics, revised Oct 2011.
    14. Alain Guay & Pierre St-Amant, 1996. "Do Mechanical Filters Provide a Good Approximation of Business Cycles?," Technical Reports 78, Bank of Canada.
    15. Biolsi, Christopher, 2023. "Do the Hamilton and Beveridge–Nelson filters provide the same information about output gaps? An empirical comparison for practitioners," Journal of Macroeconomics, Elsevier, vol. 75(C).
    16. Perron, Pierre & Wada, Tatsuma, 2016. "Measuring business cycles with structural breaks and outliers: Applications to international data," Research in Economics, Elsevier, vol. 70(2), pages 281-303.
    17. Luca Benati, 2001. "Band-pass filtering, cointegration, and business cycle analysis," Bank of England working papers 142, Bank of England.
    18. Morana, Claudio, 2024. "A new macro-financial condition index for the euro area," Econometrics and Statistics, Elsevier, vol. 29(C), pages 64-87.
    19. Tatsuma Wada & Pierre Perron, 2006. "State Space Model with Mixtures of Normals: Specifications and Applications to International Data," Boston University - Department of Economics - Working Papers Series WP2006-029, Boston University - Department of Economics.
    20. L.A. Gil-Alana, 2005. "Fractional Cyclical Structures & Business Cycles in the Specification of the US Real Output," European Research Studies Journal, European Research Studies Journal, vol. 0(1-2), pages 99-126.

    More about this item

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:26750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.