The Role of the Propensity Score in Fixed Effect Models
Author
Abstract
Suggested Citation
Note: LS
Download full text from publisher
Other versions of this item:
- Dmitry Arkhangelsky & Guido W. Imbens, 2019. "The Role of the Propensity Score in Fixed Effect Models," Working Papers wp2019_1905, CEMFI.
References listed on IDEAS
- Joseph G. Altonji & Richard K. Mansfield, 2018. "Estimating Group Effects Using Averages of Observables to Control for Sorting on Unobservables: School and Neighborhood Effects," American Economic Review, American Economic Association, vol. 108(10), pages 2902-2946, October.
- Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
- Joseph G. Altonji & Rosa L. Matzkin, 2005. "Cross Section and Panel Data Estimators for Nonseparable Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 73(4), pages 1053-1102, July.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016.
"Double machine learning for treatment and causal parameters,"
CeMMAP working papers
49/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers CWP49/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sergio Firpo, 2007.
"Efficient Semiparametric Estimation of Quantile Treatment Effects,"
Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
- Sergio Firpo, 2004. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometric Society 2004 North American Summer Meetings 605, Econometric Society.
- Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291.
- Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
- repec:hal:spmain:info:hdl:2441/etefo8s8r89oamhnhiclqr530 is not listed on IDEAS
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, September.
- Kosuke Imai & In Song Kim, 2019. "When Should We Use Unit Fixed Effects Regression Models for Causal Inference with Longitudinal Data?," American Journal of Political Science, John Wiley & Sons, vol. 63(2), pages 467-490, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hye Yoon Chung & Youjin Hahn, 2021. "Work Transitions, Gender, and Subjective Well-Being," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 16(5), pages 2085-2109, October.
- Dalia Ghanem & Pedro H. C. Sant'Anna & Kaspar Wüthrich, 2022.
"Selection and Parallel Trends,"
CESifo Working Paper Series
9910, CESifo.
- Dalia Ghanem & Pedro H. C. Sant'Anna & Kaspar Wuthrich, 2022. "Selection and parallel trends," Papers 2203.09001, arXiv.org, revised Mar 2024.
- Yang, Yimin, 2022. "A correlated random effects approach to the estimation of models with multiple fixed effects," Economics Letters, Elsevier, vol. 213(C).
- Dmitry Arkhangelsky & Guido W. Imbens, 2019.
"Doubly Robust Identification for Causal Panel Data Models,"
Papers
1909.09412, arXiv.org, revised Feb 2022.
- Dmitry Arkhangelsky & Guido W. Imbens, 2021. "Double-Robust Identification for Causal Panel Data Models," NBER Working Papers 28364, National Bureau of Economic Research, Inc.
- Berger, Marius & Hottenrott, Hanna, 2021.
"Start-up subsidies and the sources of venture capital,"
Journal of Business Venturing Insights, Elsevier, vol. 16(C).
- Hottenrott, Hanna & Berger, Marius, 2021. "Start-Up Subsidies and the Sources of Venture Capital," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242383, Verein für Socialpolitik / German Economic Association.
- Myungkou Shin, 2022. "Finitely Heterogeneous Treatment Effect in Event-study," Papers 2204.02346, arXiv.org, revised Oct 2024.
- Athey, Susan & Imbens, Guido W., 2022.
"Design-based analysis in Difference-In-Differences settings with staggered adoption,"
Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
- Athey, Susan & Imbens, Guido W., 2018. "Design-based Analysis in Difference-In-Differences Settings with Staggered Adoption," Research Papers 3712, Stanford University, Graduate School of Business.
- Susan Athey & Guido Imbens, 2018. "Design-based Analysis in Difference-In-Differences Settings with Staggered Adoption," Papers 1808.05293, arXiv.org, revised Sep 2018.
- Susan Athey & Guido W. Imbens, 2018. "Design-based Analysis in Difference-In-Differences Settings with Staggered Adoption," NBER Working Papers 24963, National Bureau of Economic Research, Inc.
- Youmi Suk, 2024. "A Within-Group Approach to Ensemble Machine Learning Methods for Causal Inference in Multilevel Studies," Journal of Educational and Behavioral Statistics, , vol. 49(1), pages 61-91, February.
- Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
- Nagasawa, Kenichi, 2020. "Identification and Estimation of Group-Level Partial Effects," The Warwick Economics Research Paper Series (TWERPS) 1243, University of Warwick, Department of Economics.
- Daniel Brüggmann & Michaela Kreyenfeld, 2023. "Earnings Trajectories After Divorce: The Legacies of the Earner Model During Marriage," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 42(2), pages 1-34, April.
- Kosuke Imai & In Song Kim, 2019. "When Should We Use Unit Fixed Effects Regression Models for Causal Inference with Longitudinal Data?," American Journal of Political Science, John Wiley & Sons, vol. 63(2), pages 467-490, April.
- Alejandro Sanchez-Becerra, 2022. "The Network Propensity Score: Spillovers, Homophily, and Selection into Treatment," Papers 2209.14391, arXiv.org.
- Laura Liu & Alexandre Poirier & Ji-Liang Shiu, 2021. "Identification and Estimation of Partial Effects in Nonlinear Semiparametric Panel Models," Papers 2105.12891, arXiv.org, revised Jul 2024.
- Dmitry Arkhangelsky & Guido W. Imbens & Lihua Lei & Xiaoman Luo, 2021. "Design-Robust Two-Way-Fixed-Effects Regression For Panel Data," Papers 2107.13737, arXiv.org, revised Mar 2024.
- Guido W. Imbens & Davide Viviano, 2023. "Identification and Inference for Synthetic Controls with Confounding," Papers 2312.00955, arXiv.org.
- Youmi Suk & Hyunseung Kang, 2022. "Robust Machine Learning for Treatment Effects in Multilevel Observational Studies Under Cluster-level Unmeasured Confounding," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 310-343, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dmitry Arkhangelsky & Guido W. Imbens, 2019.
"Doubly Robust Identification for Causal Panel Data Models,"
Papers
1909.09412, arXiv.org, revised Feb 2022.
- Dmitry Arkhangelsky & Guido W. Imbens, 2021. "Double-Robust Identification for Causal Panel Data Models," NBER Working Papers 28364, National Bureau of Economic Research, Inc.
- Dmitry Arkhangelsky & Guido Imbens, 2018. "Fixed Effects and the Generalized Mundlak Estimator," Papers 1807.02099, arXiv.org, revised Aug 2023.
- Athey, Susan & Imbens, Guido W., 2022.
"Design-based analysis in Difference-In-Differences settings with staggered adoption,"
Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
- Susan Athey & Guido Imbens, 2018. "Design-based Analysis in Difference-In-Differences Settings with Staggered Adoption," Papers 1808.05293, arXiv.org, revised Sep 2018.
- Athey, Susan & Imbens, Guido W., 2018. "Design-based Analysis in Difference-In-Differences Settings with Staggered Adoption," Research Papers 3712, Stanford University, Graduate School of Business.
- Susan Athey & Guido W. Imbens, 2018. "Design-based Analysis in Difference-In-Differences Settings with Staggered Adoption," NBER Working Papers 24963, National Bureau of Economic Research, Inc.
- Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
- Gayle, Wayne-Roy & Namoro, Soiliou Daw, 2013. "Estimation of a nonlinear panel data model with semiparametric individual effects," Journal of Econometrics, Elsevier, vol. 175(1), pages 46-59.
- Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
- Susan Athey & Guido W. Imbens, 2017.
"The State of Applied Econometrics: Causality and Policy Evaluation,"
Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
- Susan Athey & Guido Imbens, 2016. "The State of Applied Econometrics - Causality and Policy Evaluation," Papers 1607.00699, arXiv.org.
- Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021.
"Synthetic Difference-in-Differences,"
American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.
- Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2019. "Synthetic Difference In Differences," NBER Working Papers 25532, National Bureau of Economic Research, Inc.
- Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2019. "Synthetic Difference in Differences," Working Papers wp2019_1907, CEMFI.
- Bryan S. Graham & James Powell, 2008. "Identification and Estimation of 'Irregular' Correlated Random Coefficient Models," NBER Working Papers 14469, National Bureau of Economic Research, Inc.
- Dmitry Arkhangelsky & Vasily Korovkin, 2020. "On Policy Evaluation with Aggregate Time-Series Shocks," CERGE-EI Working Papers wp657, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020.
"Cherry Picking with Synthetic Controls,"
Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
- Ferman, Bruno & Pinto, Cristine Campos de Xavier & Possebom, Vítor Augusto, 2016. "Cherry picking with synthetic controls," Textos para discussão 420, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Ferman, Bruno & Pinto, Cristine & Possebom, Vitor, 2017. "Cherry Picking with Synthetic Controls," MPRA Paper 78213, University Library of Munich, Germany.
- Iván Fernández-Val & Martin Weidner, 2018.
"Fixed Effects Estimation of Large-TPanel Data Models,"
Annual Review of Economics, Annual Reviews, vol. 10(1), pages 109-138, August.
- Ivan Fernandez-Val & Martin Weidner, 2017. "Fixed effect estimation of large T panel data models," CeMMAP working papers CWP42/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ivan Fernandez-Val & Martin Weidner, 2018. "Fixed effect estimation of large T panel data models," CeMMAP working papers CWP22/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Iv'an Fern'andez-Val & Martin Weidner, 2017. "Fixed Effect Estimation of Large T Panel Data Models," Papers 1709.08980, arXiv.org, revised Mar 2018.
- Hoderlein, Stefan & White, Halbert, 2012.
"Nonparametric identification in nonseparable panel data models with generalized fixed effects,"
Journal of Econometrics, Elsevier, vol. 168(2), pages 300-314.
- Stefan Hoderlein & Halbert White, 2009. "Nonparametric Identification in Nonseparable Panel Data Models with Generalized Fixed Effects," Boston College Working Papers in Economics 746, Boston College Department of Economics.
- Stefan Hoderlein & Halbert White, 2009. "Nonparametric identification in nonseparable panel data models with generalized fixed effects," CeMMAP working papers CWP33/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022.
"Covariate distribution balance via propensity scores,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
- Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2018. "Covariate Distribution Balance via Propensity Scores," Papers 1810.01370, arXiv.org, revised Apr 2020.
- Pablo Lavado & Gonzalo Rivera, 2016. "Identifying Treatment Effects with Data Combination and Unobserved Heterogeneity," Working Papers 79, Peruvian Economic Association.
- Undral Byambadalai & Tatsushi Oka & Shota Yasui, 2024. "Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction," Papers 2407.16037, arXiv.org.
- Akwasi Ampofo, 2021. "Oil at work: natural resource effects on household well-being in Ghana," Empirical Economics, Springer, vol. 60(2), pages 1013-1058, February.
- Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006.
"Econometrics: A Bird’s Eye View,"
Cambridge Working Papers in Economics
0655, Faculty of Economics, University of Cambridge.
- Geweke, John F. & Horowitz, Joel L. & Pesaran, M. Hashem, 2006. "Econometrics: A Bird's Eye View," IZA Discussion Papers 2458, Institute of Labor Economics (IZA).
- John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
- Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
- Sviták, Jan & Tichem, Jan & Haasbeek, Stefan, 2021. "Price effects of search advertising restrictions," International Journal of Industrial Organization, Elsevier, vol. 77(C).
More about this item
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
- C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
- C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
- C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:24814. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.