IDEAS home Printed from https://ideas.repec.org/p/cer/papers/wp657.html
   My bibliography  Save this paper

On Policy Evaluation with Aggregate Time-Series Shocks

Author

Listed:
  • Dmitry Arkhangelsky
  • Vasily Korovkin

Abstract

We propose a general strategy for estimating treatment effects, in contexts where the only source of exogenous variation is a sequence of aggregate time-series shocks. We start by arguing that commonly used estimation procedures tend to ignore the crucial time-series aspects of the data. Next, we develop a graphical tool and a novel test to illustrate the issues of the design using data from influential studies in development economics [Nunn and Qian, 2014] and macroeconomics [Nakamura and Steinsson, 2014]. Motivated by these studies, we construct a new estimator, which is based on the time-series model for the aggregate shock. We analyze the statistical properties of our estimator in the practically relevant case, where both cross-sectional and time-series dimensions are of similar size. Finally, to provide causal interpretation for our estimator, we analyze a new causal model that allows taking into account both rich unobserved heterogeneity in potential outcomes and unobserved aggregate shocks.

Suggested Citation

  • Dmitry Arkhangelsky & Vasily Korovkin, 2020. "On Policy Evaluation with Aggregate Time-Series Shocks," CERGE-EI Working Papers wp657, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
  • Handle: RePEc:cer:papers:wp657
    as

    Download full text from publisher

    File URL: http://www.cerge-ei.cz/pdf/wp/Wp657.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Graham Elliott & Ulrich K. Müller & Mark W. Watson, 2015. "Nearly Optimal Tests When a Nuisance Parameter Is Present Under the Null Hypothesis," Econometrica, Econometric Society, vol. 83, pages 771-811, March.
    2. Card, David & Krueger, Alan B, 1994. "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania," American Economic Review, American Economic Association, vol. 84(4), pages 772-793, September.
    3. repec:fth:prinin:315 is not listed on IDEAS
    4. Kirill Borusyak & Peter Hull & Xavier Jaravel, 2022. "Quasi-Experimental Shift-Share Research Designs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(1), pages 181-213.
    5. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Oeindrila Dube & Juan F. Vargas, 2013. "Commodity Price Shocks and Civil Conflict: Evidence from Colombia," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(4), pages 1384-1421.
    7. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    8. Griliches, Zvi & Hausman, Jerry A., 1986. "Errors in variables in panel data," Journal of Econometrics, Elsevier, vol. 31(1), pages 93-118, February.
    9. Timothy J. Bartik, 1991. "Who Benefits from State and Local Economic Development Policies?," Books from Upjohn Press, W.E. Upjohn Institute for Employment Research, number wbsle, November.
    10. Emi Nakamura & J?n Steinsson, 2014. "Fiscal Stimulus in a Monetary Union: Evidence from US Regions," American Economic Review, American Economic Association, vol. 104(3), pages 753-792, March.
    11. David Card & Alan Krueger, 1993. "Minimum Wages and Employment: A Case Study of the Fast Food Industry in New Jersey and Pennsylvania," Working Papers 694, Princeton University, Department of Economics, Industrial Relations Section..
    12. Paul Goldsmith-Pinkham & Isaac Sorkin & Henry Swift, 2020. "Bartik Instruments: What, When, Why, and How," American Economic Review, American Economic Association, vol. 110(8), pages 2586-2624, August.
    13. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    14. Ulrich K. Müller & Mark W. Watson, 2008. "Testing Models of Low-Frequency Variability," Econometrica, Econometric Society, vol. 76(5), pages 979-1016, September.
    15. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    16. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    17. Nathan Nunn & Nancy Qian, 2014. "US Food Aid and Civil Conflict," American Economic Review, American Economic Association, vol. 104(6), pages 1630-1666, June.
    18. James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
    19. Ivan A. Canay & Joseph P. Romano & Azeem M. Shaikh, 2017. "Randomization Tests Under an Approximate Symmetry Assumption," Econometrica, Econometric Society, vol. 85, pages 1013-1030, May.
    20. Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291.
    21. Isaiah Andrews & James H. Stock & Liyang Sun, 2019. "Weak Instruments in Instrumental Variables Regression: Theory and Practice," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 727-753, August.
    22. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, September.
    23. Ibragimov, Rustam & Müller, Ulrich K., 2010. "t-Statistic Based Correlation and Heterogeneity Robust Inference," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 453-468.
    24. Edward Miguel & Shanker Satyanath & Ernest Sergenti, 2004. "Economic Shocks and Civil Conflict: An Instrumental Variables Approach," Journal of Political Economy, University of Chicago Press, vol. 112(4), pages 725-753, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeremy Majerovitz & Karthik Sastry, 2023. "How Much Should We Trust Regional-Exposure Designs?," Working Papers 2023-018, Federal Reserve Bank of St. Louis.
    2. Fiammetta Menchetti & Fabrizio Cipollini & Fabrizia Mealli, 2023. "Combining counterfactual outcomes and ARIMA models for policy evaluation," The Econometrics Journal, Royal Economic Society, vol. 26(1), pages 1-24.
    3. Daniel A. Broxterman & William D. Larson, 2020. "An empirical examination of shift‐share instruments," Journal of Regional Science, Wiley Blackwell, vol. 60(4), pages 677-711, September.
    4. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    5. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    6. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    7. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    8. Crawford, Rowena & Stoye, George & Zaranko, Ben, 2021. "Long-term care spending and hospital use among the older population in England," Journal of Health Economics, Elsevier, vol. 78(C).
    9. Lu, Yifan & Yamazaki, Satoshi, 2023. "Fish to fight: Does catching more fish increase conflicts in Indonesia?," World Development, Elsevier, vol. 170(C).
    10. Davide Viviano & Jelena Bradic, 2021. "Dynamic covariate balancing: estimating treatment effects over time with potential local projections," Papers 2103.01280, arXiv.org, revised Jan 2024.
    11. Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021. "Synthetic Difference-in-Differences," American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.
    12. Mr. Philip Barrett, 2018. "The Fiscal Cost of Conflict: Evidence from Afghanistan 2005-2016," IMF Working Papers 2018/204, International Monetary Fund.
    13. He, Xiaoyu & Mei, Yixin, 2024. "Can arms breed peace? The consequence of arms imports from the US on civil wars," Journal of Comparative Economics, Elsevier, vol. 52(1), pages 207-229.
    14. Kirill Borusyak & Peter Hull & Xavier Jaravel, 2023. "Design-Based Identification with Formula Instruments: A Review," NBER Working Papers 31393, National Bureau of Economic Research, Inc.
    15. Gehring, Kai & Kaplan, Lennart C. & Wong, Melvin H.L., 2022. "China and the World Bank—How contrasting development approaches affect the stability of African states," Journal of Development Economics, Elsevier, vol. 158(C).
    16. Crost, Benjamin & Felter, Joseph H. & Johnston, Patrick B., 2016. "Conditional cash transfers, civil conflict and insurgent influence: Experimental evidence from the Philippines," Journal of Development Economics, Elsevier, vol. 118(C), pages 171-182.
    17. Philippe Aghion & Antonin Bergeaud & Matthieu Lequien & Marc J. Melitz, 2024. "The Heterogeneous Impact of Market Size on Innovation: Evidence from French Firm-Level Exports," The Review of Economics and Statistics, MIT Press, vol. 106(3), pages 608-626, May.
    18. Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
    19. Verme, Paolo & Schuettler, Kirsten, 2021. "The impact of forced displacement on host communities: A review of the empirical literature in economics," Journal of Development Economics, Elsevier, vol. 150(C).
    20. Jason Poulos & Andrea Albanese & Andrea Mercatanti & Fan Li, 2021. "Retrospective causal inference via matrix completion, with an evaluation of the effect of European integration on cross-border employment," Papers 2106.00788, arXiv.org.

    More about this item

    Keywords

    continuous difference in differences; panel data; causal effects; treatment effects; unobserved heterogeneity;
    All these keywords.

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cer:papers:wp657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lucie Vasiljevova (email available below). General contact details of provider: https://edirc.repec.org/data/eiacacz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.