Robust Machine Learning for Treatment Effects in Multilevel Observational Studies Under Cluster-level Unmeasured Confounding
Author
Abstract
Suggested Citation
DOI: 10.1007/s11336-021-09805-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Arpino, Bruno & Mealli, Fabrizia, 2011.
"The specification of the propensity score in multilevel observational studies,"
Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1770-1780, April.
- Bruno Arpino & Fabrizia Mealli, 2008. "The specification of the propensity score in multilevel observational studies," Working Papers 006, "Carlo F. Dondena" Centre for Research on Social Dynamics (DONDENA), Università Commerciale Luigi Bocconi.
- Arpino, Bruno & Mealli, Fabrizia, 2008. "The specification of the propensity score in multilevel observational studies," MPRA Paper 17407, University Library of Munich, Germany.
- Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
- Peng Ding & Avi Feller & Luke Miratrix, 2019. "Decomposing Treatment Effect Variation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 304-317, January.
- Jee-Seon Kim & Edward Frees, 2006. "Omitted Variables in Multilevel Models," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 659-690, December.
- Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
- Jee-Seon Kim & Edward Frees, 2007. "Multilevel Modeling with Correlated Effects," Psychometrika, Springer;The Psychometric Society, vol. 72(4), pages 505-533, December.
- Henderson, Daniel J. & Carroll, Raymond J. & Li, Qi, 2008. "Nonparametric estimation and testing of fixed effects panel data models," Journal of Econometrics, Elsevier, vol. 144(1), pages 257-275, May.
- Hong, Guanglei & Raudenbush, Stephen W., 2006. "Evaluating Kindergarten Retention Policy: A Case Study of Causal Inference for Multilevel Observational Data," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 901-910, September.
- Jeffrey M Wooldridge, 2010.
"Econometric Analysis of Cross Section and Panel Data,"
MIT Press Books,
The MIT Press,
edition 2, volume 1, number 0262232588, December.
- Jeffrey M. Wooldridge, 2001. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262232197, December.
- Dmitry Arkhangelsky & Guido Imbens, 2018.
"The Role of the Propensity Score in Fixed Effect Models,"
NBER Working Papers
24814, National Bureau of Economic Research, Inc.
- Dmitry Arkhangelsky & Guido W. Imbens, 2019. "The Role of the Propensity Score in Fixed Effect Models," Working Papers wp2019_1905, CEMFI.
- Shadish, William R. & Clark, M. H. & Steiner, Peter M., 2008. "Can Nonrandomized Experiments Yield Accurate Answers? A Randomized Experiment Comparing Random and Nonrandom Assignments," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1334-1344.
- Glynn, Adam N. & Quinn, Kevin M., 2010. "An Introduction to the Augmented Inverse Propensity Weighted Estimator," Political Analysis, Cambridge University Press, vol. 18(1), pages 36-56, January.
- Lin, Zhongjian & Li, Qi & Sun, Yiguo, 2014. "A consistent nonparametric test of parametric regression functional form in fixed effects panel data models," Journal of Econometrics, Elsevier, vol. 178(P1), pages 167-179.
- Gruber, Susan & Laan, Mark van der, 2012. "tmle: An R Package for Targeted Maximum Likelihood Estimation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i13).
- Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
- Jordan H. Rickles, 2013. "Examining Heterogeneity in the Effect of Taking Algebra in Eighth Grade," The Journal of Educational Research, Taylor & Francis Journals, vol. 106(4), pages 251-268, July.
- Kosuke Imai & In Song Kim, 2019. "When Should We Use Unit Fixed Effects Regression Models for Causal Inference with Longitudinal Data?," American Journal of Political Science, John Wiley & Sons, vol. 63(2), pages 467-490, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Youmi Suk, 2024. "A Within-Group Approach to Ensemble Machine Learning Methods for Causal Inference in Multilevel Studies," Journal of Educational and Behavioral Statistics, , vol. 49(1), pages 61-91, February.
- Youmi Suk & Kyung T. Han, 2024. "A Psychometric Framework for Evaluating Fairness in Algorithmic Decision Making: Differential Algorithmic Functioning," Journal of Educational and Behavioral Statistics, , vol. 49(2), pages 151-172, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Youmi Suk, 2024. "A Within-Group Approach to Ensemble Machine Learning Methods for Causal Inference in Multilevel Studies," Journal of Educational and Behavioral Statistics, , vol. 49(1), pages 61-91, February.
- Mary Ying-Fang Wang & Paul Tuss & Lihong Qi, 2019. "Augmented Weighted Estimators Dealing with Practical Positivity Violation to Causal inferences in a Random Coefficient Model," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 447-467, June.
- Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
- Jushan Bai & Sung Hoon Choi & Yuan Liao, 2021.
"Feasible generalized least squares for panel data with cross-sectional and serial correlations,"
Empirical Economics, Springer, vol. 60(1), pages 309-326, January.
- Jushan Bai & Sung Hoon Choi & Yuan Liao, 2019. "Feasible Generalized Least Squares for Panel Data with Cross-sectional and Serial Correlations," Papers 1910.09004, arXiv.org, revised Aug 2020.
- Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
- Dmitry Arkhangelsky & Guido W. Imbens & Lihua Lei & Xiaoman Luo, 2021. "Design-Robust Two-Way-Fixed-Effects Regression For Panel Data," Papers 2107.13737, arXiv.org, revised Mar 2024.
- Lechner, Michael & Okasa, Gabriel, 2019.
"Random Forest Estimation of the Ordered Choice Model,"
Economics Working Paper Series
1908, University of St. Gallen, School of Economics and Political Science.
- Michael Lechner & Gabriel Okasa, 2019. "Random Forest Estimation of the Ordered Choice Model," Papers 1907.02436, arXiv.org, revised Sep 2022.
- Aleksey Oshchepkov & Anna Shirokanova, 2020. "Multilevel Modeling For Economists: Why, When And How," HSE Working papers WP BRP 233/EC/2020, National Research University Higher School of Economics.
- Kerda Varaku & Robin Sickles, 2023. "Public subsidies and innovation: a doubly robust machine learning approach leveraging deep neural networks," Empirical Economics, Springer, vol. 64(6), pages 3121-3165, June.
- Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
- Augustine Denteh & Helge Liebert, 2022.
"Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment,"
Papers
2201.07072, arXiv.org, revised Apr 2023.
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," CESifo Working Paper Series 9664, CESifo.
- Denteh, Augustine & Liebert, Helge, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," IZA Discussion Papers 15192, Institute of Labor Economics (IZA).
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Working Papers 2201, Tulane University, Department of Economics.
- Matias D Cattaneo & Michael Jansson & Xinwei Ma, 2019.
"Two-Step Estimation and Inference with Possibly Many Included Covariates,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(3), pages 1095-1122.
- Matias D. Cattaneo & Michael Jansson & Xinwei Ma, 2018. "Two-Step Estimation and Inference with Possibly Many Included Covariates," Papers 1807.10100, arXiv.org.
- Cattaneo, Matias D & Jansson, Michael & Ma, Xinwei, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," University of California at San Diego, Economics Working Paper Series qt86c7x315, Department of Economics, UC San Diego.
- Cattaneo, Matias D & Jansson, Michael & Ma, Xinwei, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," Department of Economics, Working Paper Series qt86c7x315, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Jiaming Mao & Jingzhi Xu, 2020. "Ensemble Learning with Statistical and Structural Models," Papers 2006.05308, arXiv.org.
- Joshua B. Gilbert & Zachary Himmelsbach & James Soland & Mridul Joshi & Benjamin W. Domingue, 2024. "Estimating Heterogeneous Treatment Effects with Item-Level Outcome Data: Insights from Item Response Theory," Papers 2405.00161, arXiv.org, revised Aug 2024.
- Khashayar Khosravi & Greg Lewis & Vasilis Syrgkanis, 2019. "Non-Parametric Inference Adaptive to Intrinsic Dimension," Papers 1901.03719, arXiv.org, revised Jun 2019.
- Jorge Manzi & Ernesto San Martín & Sébastien Van Bellegem, 2014. "School System Evaluation by Value Added Analysis Under Endogeneity," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 130-153, January.
- Isaac Meza & Rahul Singh, 2021. "Nested Nonparametric Instrumental Variable Regression: Long Term, Mediated, and Time Varying Treatment Effects," Papers 2112.14249, arXiv.org, revised Mar 2024.
- Paul S. Clarke & Annalivia Polselli, 2023. "Double Machine Learning for Static Panel Models with Fixed Effects," Papers 2312.08174, arXiv.org, revised Dec 2024.
- Jiabei Yang & Issa J. Dahabreh & Jon A. Steingrimsson, 2022. "Causal interaction trees: Finding subgroups with heterogeneous treatment effects in observational data," Biometrics, The International Biometric Society, vol. 78(2), pages 624-635, June.
- Xiang Zhou, 2022. "Semiparametric estimation for causal mediation analysis with multiple causally ordered mediators," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 794-821, July.
More about this item
Keywords
causal inference; machine learning methods; unmeasured variables; omitted variable bias; fixed effects models;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:87:y:2022:i:1:d:10.1007_s11336-021-09805-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.