IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/22976.html
   My bibliography  Save this paper

Classification Trees for Heterogeneous Moment-Based Models

Author

Listed:
  • Sam Asher
  • Denis Nekipelov
  • Paul Novosad
  • Stephen P. Ryan

Abstract

A basic problem in applied settings is that different parameters may apply to the same model in different populations. We address this problem by proposing a method using moment trees; leveraging the basic intuition of a classification tree, our method partitions the covariate space into disjoint subsets and fits a set of moments within each subspace. We prove the consistency of this estimator and show standard rates of convergence apply post-model selection. Monte Carlo evidence demonstrates the excellent small sample performance and faster-than-parametric convergence rates of the model selection step in two common empirical contexts. Finally, we showcase the usefulness of our approach by estimating heterogeneous treatment effects in a regression discontinuity design in a development setting.

Suggested Citation

  • Sam Asher & Denis Nekipelov & Paul Novosad & Stephen P. Ryan, 2016. "Classification Trees for Heterogeneous Moment-Based Models," NBER Working Papers 22976, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:22976
    Note: DEV IO LS
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w22976.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    2. Allan Collard-Wexler & Jan De Loecker, 2015. "Reallocation and Technology: Evidence from the US Steel Industry," American Economic Review, American Economic Association, vol. 105(1), pages 131-171, January.
    3. Alan Barreca & Karen Clay & Olivier Deschênes & Michael Greenstone & Joseph S. Shapiro, 2015. "Convergence in Adaptation to Climate Change: Evidence from High Temperatures and Mortality, 1900-2004," American Economic Review, American Economic Association, vol. 105(5), pages 247-251, May.
    4. Joseph J. Doyle Jr. & John A. Graves & Jonathan Gruber & Samuel A. Kleiner, 2015. "Measuring Returns to Hospital Care: Evidence from Ambulance Referral Patterns," Journal of Political Economy, University of Chicago Press, vol. 123(1), pages 170-214.
    5. Banerjee, Abhijit & Barnhardt, Sharon & Duflo, Esther, 2018. "Can iron-fortified salt control anemia? Evidence from two experiments in rural Bihar," Journal of Development Economics, Elsevier, vol. 133(C), pages 127-146.
    6. Xiaohong Chen & Xiaotong Shen, 1998. "Sieve Extremum Estimates for Weakly Dependent Data," Econometrica, Econometric Society, vol. 66(2), pages 289-314, March.
    7. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    8. Card, David, 1999. "The causal effect of education on earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 30, pages 1801-1863, Elsevier.
    9. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    10. Andrew Gelman & Guido Imbens, 2019. "Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 447-456, July.
    11. Gharad Bryan & Shyamal Chowdhury & Ahmed Mushfiq Mobarak, 2014. "Underinvestment in a Profitable Technology: The Case of Seasonal Migration in Bangladesh," Econometrica, Econometric Society, vol. 82(5), pages 1671-1748, September.
    12. James Heckman & Rodrigo Pinto & Peter Savelyev, 2013. "Understanding the Mechanisms through Which an Influential Early Childhood Program Boosted Adult Outcomes," American Economic Review, American Economic Association, vol. 103(6), pages 2052-2086, October.
    13. Melissa Dell, 2015. "Trafficking Networks and the Mexican Drug War," American Economic Review, American Economic Association, vol. 105(6), pages 1738-1779, June.
    14. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    15. Athey, Susan & Imbens, Guido W., 2015. "Machine Learning for Estimating Heterogeneous Causal Effects," Research Papers 3350, Stanford University, Graduate School of Business.
    16. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    17. Cappelli, Carmela & Mola, Francesco & Siciliano, Roberta, 2002. "A statistical approach to growing a reliable honest tree," Computational Statistics & Data Analysis, Elsevier, vol. 38(3), pages 285-299, January.
    18. David S. Lee & Thomas Lemieux, 2010. "Regression Discontinuity Designs in Economics," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 281-355, June.
    19. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    20. O. Ashenfelter & D. Card (ed.), 1999. "Handbook of Labor Economics," Handbook of Labor Economics, Elsevier, edition 1, volume 3, number 3.
    21. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    22. Jian Zhang & Irène Gijbels, 2003. "Sieve Empirical Likelihood and Extensions of the Generalized Least Squares," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 1-24, March.
    23. Raballand, Gael & Thornton, Rebecca & Yang, Dean & Goldberg, Jessica & Keleher, Niall & Muller, Annika, 2011. "Are rural road investments alone sufficient to generate transport flows ? lessons from a randomized experiment in rural Malawi and policy implications," Policy Research Working Paper Series 5535, The World Bank.
    24. Raj Chetty & Nathaniel Hendren & Lawrence F. Katz, 2016. "The Effects of Exposure to Better Neighborhoods on Children: New Evidence from the Moving to Opportunity Experiment," American Economic Review, American Economic Association, vol. 106(4), pages 855-902, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timmins, Christopher & Vissing, Ashley, 2022. "Environmental justice and Coasian bargaining: The role of race, ethnicity, and income in lease negotiations for shale gas," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    2. Miller, Steve, 2020. "Causal forest estimation of heterogeneous and time-varying environmental policy effects," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    3. Susan Athey, 2018. "The Impact of Machine Learning on Economics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 507-547, National Bureau of Economic Research, Inc.
    4. Guber, Raphael, 2018. "Instrument Validity Tests with Causal Trees: With an Application to the Same-sex Instrument," MEA discussion paper series 201805, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
    5. Daria Loginova & Stefan Mann, 2023. "Measuring stability and structural breaks: Applications in social sciences," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 302-320, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Han & Mahajan, Aprajit & Nekipelov, Denis, 2015. "Extremum estimation and numerical derivatives," Journal of Econometrics, Elsevier, vol. 188(1), pages 250-263.
    2. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    3. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    4. Cattaneo, Matias D., 2010. "Efficient semiparametric estimation of multi-valued treatment effects under ignorability," Journal of Econometrics, Elsevier, vol. 155(2), pages 138-154, April.
    5. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    6. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    7. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    8. Shiu, Ji-Liang & Hu, Yingyao, 2013. "Identification and estimation of nonlinear dynamic panel data models with unobserved covariates," Journal of Econometrics, Elsevier, vol. 175(2), pages 116-131.
    9. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    10. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1140-1177, October.
    11. Dennis Kristensen, 2009. "Semiparametric Modelling and Estimation: A Selective Overview," CREATES Research Papers 2009-44, Department of Economics and Business Economics, Aarhus University.
    12. Adrien Montalbo, 2020. "Education supply and economic growth in nineteenth-century France," Working Papers halshs-02482643, HAL.
    13. Xiaohong Chen & Demian Pouzo, 2015. "Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models," Econometrica, Econometric Society, vol. 83(3), pages 1013-1079, May.
    14. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    15. Kyoo il Kim, 2006. "Semiparametric Estimation of Signaling Games," Labor Economics Working Papers 22452, East Asian Bureau of Economic Research.
    16. Chen, Xiaohong & Liao, Zhipeng, 2015. "Sieve semiparametric two-step GMM under weak dependence," Journal of Econometrics, Elsevier, vol. 189(1), pages 163-186.
    17. Ichimura, Hidehiko & Lee, Sokbae, 2010. "Characterization of the asymptotic distribution of semiparametric M-estimators," Journal of Econometrics, Elsevier, vol. 159(2), pages 252-266, December.
    18. Xiaohong Chen & Demian Pouzo, 2014. "Sieve Wald and QLR Inferences on Semi/nonparametric Conditional Moment Models," CeMMAP working papers 38/14, Institute for Fiscal Studies.
    19. repec:hum:wpaper:sfb649dp2014-043 is not listed on IDEAS
    20. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    21. Patrick Bajari & Chenghuan Sean Chu & Denis Nekipelov & Minjung Park, 2013. "A Dynamic Model of Subprime Mortgage Default: Estimation and Policy Implications," NBER Working Papers 18850, National Bureau of Economic Research, Inc.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • O12 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Microeconomic Analyses of Economic Development
    • O18 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Urban, Rural, Regional, and Transportation Analysis; Housing; Infrastructure

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:22976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.