IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v178y2014i2p707-715.html
   My bibliography  Save this article

Treatment effect estimation with covariate measurement error

Author

Listed:
  • Battistin, Erich
  • Chesher, Andrew

Abstract

This paper investigates the effect that covariate measurement error has on a treatment effect analysis built on an unconfoundedness restriction in which there is conditioning on error free covariates. The approach uses small parameter asymptotic methods to obtain the approximate effects of measurement error for estimators of average treatment effects. The approximations can be estimated using data on observed outcomes, the treatment indicator and error contaminated covariates without employing additional information from validation data or instrumental variables. The results can be used in a sensitivity analysis to probe the potential effects of measurement error on the evaluation of treatment effects.

Suggested Citation

  • Battistin, Erich & Chesher, Andrew, 2014. "Treatment effect estimation with covariate measurement error," Journal of Econometrics, Elsevier, vol. 178(2), pages 707-715.
  • Handle: RePEc:eee:econom:v:178:y:2014:i:2:p:707-715
    DOI: 10.1016/j.jeconom.2013.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030440761300225X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2013.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Guildo W. Imbens, 2003. "Sensitivity to Exogeneity Assumptions in Program Evaluation," American Economic Review, American Economic Association, vol. 93(2), pages 126-132, May.
    2. Patrick Kline & Andres Santos, 2013. "Sensitivity to missing data assumptions: Theory and an evaluation of the U.S. wage structure," Quantitative Economics, Econometric Society, vol. 4(2), pages 231-267, July.
    3. Battistin, Erich & Chesher, Andrew, 2014. "Treatment effect estimation with covariate measurement error," Journal of Econometrics, Elsevier, vol. 178(2), pages 707-715.
    4. Andrew Chesher & Christian Schluter, 2002. "Welfare Measurement and Measurement Error," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(2), pages 357-378.
    5. Susanne M. Schennach, 2004. "Estimation of Nonlinear Models with Measurement Error," Econometrica, Econometric Society, vol. 72(1), pages 33-75, January.
    6. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843, Elsevier.
    7. Battistin, Erich & De Nadai, Michele & Sianesi, Barbara, 2014. "Misreported schooling, multiple measures and returns to educational qualifications," Journal of Econometrics, Elsevier, vol. 181(2), pages 136-150.
    8. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    9. Arthur Lewbel, 2007. "Estimation of Average Treatment Effects with Misclassification," Econometrica, Econometric Society, vol. 75(2), pages 537-551, March.
    10. Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2008. "Using Selection on Observed Variables to Assess Bias from Unobservables When Evaluating Swan-Ganz Catheterization," American Economic Review, American Economic Association, vol. 98(2), pages 345-350, May.
    11. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    12. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    13. Chesher, Andrew D, 1984. "Testing for Neglected Heterogeneity," Econometrica, Econometric Society, vol. 52(4), pages 865-872, July.
    14. Hu, Yingyao, 2008. "Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution," Journal of Econometrics, Elsevier, vol. 144(1), pages 27-61, May.
    15. Xiaohong Chen & Han Hong & Denis Nekipelov, 2011. "Nonlinear Models of Measurement Errors," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 901-937, December.
    16. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    17. Molinari, Francesca, 2008. "Partial identification of probability distributions with misclassified data," Journal of Econometrics, Elsevier, vol. 144(1), pages 81-117, May.
    18. Richard Blundell & Lorraine Dearden & Barbara Sianesi, 2005. "Evaluating the effect of education on earnings: models, methods and results from the National Child Development Survey," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(3), pages 473-512, July.
    19. Andrew Chesher & J. M. C. Santos Silva, 2002. "Taste Variation in Discrete Choice Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(1), pages 147-168.
    20. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    21. Aprajit Mahajan, 2006. "Identification and Estimation of Regression Models with Misclassification," Econometrica, Econometric Society, vol. 74(3), pages 631-665, May.
    22. V. Joseph Hotz & Charles H. Mullin & Seth G. Sanders, 1997. "Bounding Causal Effects Using Data from a Contaminated Natural Experiment: Analysing the Effects of Teenage Childbearing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 575-603.
    23. Heckman, James J. & Robb, Richard Jr., 1985. "Alternative methods for evaluating the impact of interventions : An overview," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 239-267.
    24. James J. Heckman, 2000. "Causal Parameters and Policy Analysis in Economics: A Twentieth Century Retrospective," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 115(1), pages 45-97.
    25. Susanne M Schennach, 2007. "Instrumental Variable Estimation of Nonlinear Errors-in-Variables Models," Econometrica, Econometric Society, vol. 75(1), pages 201-239, January.
    26. Li, Tong, 2002. "Robust and consistent estimation of nonlinear errors-in-variables models," Journal of Econometrics, Elsevier, vol. 110(1), pages 1-26, September.
    27. Chesher, Andrew & Dumangane, Montezuma & Smith, Richard J., 2002. "Duration response measurement error," Journal of Econometrics, Elsevier, vol. 111(2), pages 169-194, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davezies, Laurent & Le Barbanchon, Thomas, 2017. "Regression discontinuity design with continuous measurement error in the running variable," Journal of Econometrics, Elsevier, vol. 200(2), pages 260-281.
    2. Zhuan Pei & Jörn-Steffen Pischke & Hannes Schwandt, 2019. "Poorly Measured Confounders are More Useful on the Left than on the Right," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 205-216, April.
    3. Chiara Criscuolo & Ralf Martin & Henry G. Overman & John Van Reenen, 2019. "Some Causal Effects of an Industrial Policy," American Economic Review, American Economic Association, vol. 109(1), pages 48-85, January.
    4. Chesher, Andrew, 2017. "Understanding the effect of measurement error on quantile regressions," Journal of Econometrics, Elsevier, vol. 200(2), pages 223-237.
    5. Battistin, Erich & Chesher, Andrew, 2014. "Treatment effect estimation with covariate measurement error," Journal of Econometrics, Elsevier, vol. 178(2), pages 707-715.
    6. Caliendo, Marco & Künn, Steffen & Weißenberger, Martin, 2016. "Personality traits and the evaluation of start-up subsidies," European Economic Review, Elsevier, vol. 86(C), pages 87-108.
    7. Maciej Jakubowski, 2015. "Latent variables and propensity score matching: a simulation study with application to data from the Programme for International Student Assessment in Poland," Empirical Economics, Springer, vol. 48(3), pages 1287-1325, May.
    8. Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," JRFM, MDPI, vol. 13(11), pages 1-24, November.
    9. Arulampalam, Wiji & Corradi, Valentina & Gutknecht, Daniel, 2017. "Modeling heaped duration data: An application to neonatal mortality," Journal of Econometrics, Elsevier, vol. 200(2), pages 363-377.
    10. Erich Battistin & Agar Brugiavini & Enrico Rettore & Guglielmo Weber, 2009. "The Retirement Consumption Puzzle: Evidence from a Regression Discontinuity Approach," American Economic Review, American Economic Association, vol. 99(5), pages 2209-2226, December.
    11. Andrei Zeleneev & Kirill Evdokimov, 2023. "Simple estimation of semiparametric models with measurement errors," CeMMAP working papers 10/23, Institute for Fiscal Studies.
    12. Kirill S. Evdokimov & Andrei Zeleneev, 2023. "Simple Estimation of Semiparametric Models with Measurement Errors," Papers 2306.14311, arXiv.org, revised Mar 2024.
    13. Yingying Dong, 2012. "Regression Discontinuity Applications with Rounding Errors in the Running Variable," Working Papers 111206, University of California-Irvine, Department of Economics.
    14. Toru Kitagawa & Martin Nybom & Jan Stuhler, 2018. "Measurement error and rank correlations," CeMMAP working papers CWP28/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Battistin, Erich & De Nadai, Michele & Sianesi, Barbara, 2014. "Misreported schooling, multiple measures and returns to educational qualifications," Journal of Econometrics, Elsevier, vol. 181(2), pages 136-150.
    2. Hu, Yingyao, 2017. "The Econometrics of Unobservables -- Latent Variable and Measurement Error Models and Their Applications in Empirical Industrial Organization and Labor Economics [The Econometrics of Unobservables]," Economics Working Paper Archive 64578, The Johns Hopkins University,Department of Economics, revised 2021.
    3. Hu, Yingyao, 2017. "The econometrics of unobservables: Applications of measurement error models in empirical industrial organization and labor economics," Journal of Econometrics, Elsevier, vol. 200(2), pages 154-168.
    4. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    5. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "On Mis-measured Binary Regressors: New Results And Some Comments on the Literature, Third Version," PIER Working Paper Archive 15-040, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 24 Nov 2015.
    6. Takahide Yanagi, 2019. "Inference on local average treatment effects for misclassified treatment," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 938-960, September.
    7. Francis J. DiTraglia & Camilo García-Jimeno, 2017. "Mis-classified, Binary, Endogenous Regressors: Identification and Inference," NBER Working Papers 23814, National Bureau of Economic Research, Inc.
    8. Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," JRFM, MDPI, vol. 13(11), pages 1-24, November.
    9. Erich Battistin & Barbara Sianesi, 2006. "Misreported schooling and returns to education: evidence from the UK," CeMMAP working papers CWP07/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    11. Hu, Yingyao, 2008. "Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution," Journal of Econometrics, Elsevier, vol. 144(1), pages 27-61, May.
    12. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers 41/12, Institute for Fiscal Studies.
    13. Xiaohong Chen & Han Hong & Denis Nekipelov, 2011. "Nonlinear Models of Measurement Errors," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 901-937, December.
    14. Xiaohong Chen & Yingyao Hu, 2006. "Identification and Inference of Nonlinear Models Using Two Samples with Arbitrary Measurement Errors," Cowles Foundation Discussion Papers 1590, Cowles Foundation for Research in Economics, Yale University.
    15. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, January.
    16. Shiu, Ji-Liang, 2016. "Identification and estimation of endogenous selection models in the presence of misclassification errors," Economic Modelling, Elsevier, vol. 52(PB), pages 507-518.
    17. Hu, Yingyao & Sasaki, Yuya, 2015. "Closed-form estimation of nonparametric models with non-classical measurement errors," Journal of Econometrics, Elsevier, vol. 185(2), pages 392-408.
    18. Heckman, James J., 2010. "The Assumptions Underlying Evaluation Estimators," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 30(2), December.
    19. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    20. Daniel Wilhelm, 2018. "Testing for the presence of measurement error," CeMMAP working papers CWP45/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    Keywords

    Measurement error; Potential outcomes; Parameter asymptotics; Treatment effects;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:178:y:2014:i:2:p:707-715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.