IDEAS home Printed from https://ideas.repec.org/p/nbr/nberte/0150.html
   My bibliography  Save this paper

Split Sample Instrumental Variables

Author

Listed:
  • Joshua D. Angrist
  • Alan B. Krueger

Abstract

Instrumental Variables (IV) estimates tend to be biased in the same direction as Ordinary Least Squares (OLS) in finite samples if the instruments are weak. To address this problem we propose a new IV estimator which we call Split Sample Instrumental Variables (SSIV). SSIV works as follows: we randomly split the sample in half, and use one half of the sample to estimate parameters of the first-stage equation. We then use these estimated first-stage parameters to construct fitted values and second-stage parameter estimates using data from the other half sample. SSIV is biased toward zero, rather than toward the plim of the OLS estimate. However, an unbiased estimate of the attenuation bias of SSIV can be calculated. We us this estimate of the attenutation bias to derive an estimator that is asymptotically unbiased as the number of instruments tends to infinity, holding the number of observations per instrument fixed. We label this new estimator Unbiased Split Sample Instrumental Variables (USSIV). We apply SSIV and USSIV to the data used by Angrist and Krueger (1991) to estimate the payoff to education.

Suggested Citation

  • Joshua D. Angrist & Alan B. Krueger, 1995. "Split Sample Instrumental Variables," NBER Technical Working Papers 0150, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberte:0150
    Note: LS
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/t0150.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. John Bound & David A. Jaeger & Regina Baker, 1993. "The Cure Can Be Worse than the Disease: A Cautionary Tale Regarding Instrumental Variables," NBER Technical Working Papers 0137, National Bureau of Economic Research, Inc.
    2. Altonji, Joseph G & Segal, Lewis M, 1996. "Small-Sample Bias in GMM Estimation of Covariance Structures," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 353-366, July.
    3. Nelson, Charles R & Startz, Richard, 1990. "The Distribution of the Instrumental Variables Estimator and Its t-Ratio When the Instrument Is a Poor One," The Journal of Business, University of Chicago Press, vol. 63(1), pages 125-140, January.
    4. Joshua D. Angrist & Alan B. Krueger, 1990. "The Effect of Age at School Entry on Educational Attainment: An Application of Instrumental Variables with Moments from Two Samples," NBER Working Papers 3571, National Bureau of Economic Research, Inc.
    5. Bekker, P.A., 1992. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Papers 512, Groningen State, Institute of Economic Research-.
    6. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    7. Sargan, J D, 1974. "The Validity of Nagar's Expansion for the Moments of Econometric Estimators," Econometrica, Econometric Society, vol. 42(1), pages 169-176, January.
    8. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angrist, J D & Imbens, G W & Krueger, A B, 1999. "Jackknife Instrumental Variables Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
    2. Paul A. Bekker & Jan van der Ploeg, 2000. "Instrumental Variable Estimation Based on Grouped Data," Econometric Society World Congress 2000 Contributed Papers 1862, Econometric Society.
    3. Blomquist, Soren & Dahlberg, Matz, 1999. "Small Sample Properties of LIML and Jackknife IV Estimators: Experiments with Weak Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 69-88, Jan.-Feb..
    4. Del Bono, Emilia & Galindo-Rueda, Fernando, 2006. "The long term impacts of compulsory schooling: evidence from a natural experiment in school leaving dates," ISER Working Paper Series 2006-44, Institute for Social and Economic Research.
    5. Cai, Zongwu & Fang, Ying & Su, Jia, 2012. "Reducing asymptotic bias of weak instrumental estimation using independently repeated cross-sectional information," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 180-185.
    6. Morin, Louis-Philippe, 2010. "Estimating the BenefiÂ…t of High School for College-Bound Students," CLSSRN working papers clsrn_admin-2010-3, Vancouver School of Economics, revised 30 Jan 2010.
    7. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    8. Dufour, Jean-Marie, 2001. "Logique et tests d’hypothèses," L'Actualité Economique, Société Canadienne de Science Economique, vol. 77(2), pages 171-190, juin.
    9. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    10. Emma M. Iglesias & Garry D. A. Phillips, 2012. "Almost Unbiased Estimation in Simultaneous Equation Models With Strong and/or Weak Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 505-520, June.
    11. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    12. Kasey S. Buckles & Daniel M. Hungerman, 2013. "Season of Birth and Later Outcomes: Old Questions, New Answers," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 711-724, July.
    13. Carroll, Christopher D. & Samwick, Andrew A., 1997. "The nature of precautionary wealth," Journal of Monetary Economics, Elsevier, vol. 40(1), pages 41-71, September.
    14. Alonso-Borrego, Cesar & Arellano, Manuel, 1999. "Symmetrically Normalized Instrumental-Variable Estimation Using Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 36-49, January.
    15. DUFOUR, Jean-Marie & JASIAK, Joanna, 1998. "Finite-Sample Inference Methods for Simultaneous Equations and Models with Unobserved and Generated Regressors," Cahiers de recherche 9812, Universite de Montreal, Departement de sciences economiques.
    16. Horowitz, Joel L., 2021. "Bounding the difference between true and nominal rejection probabilities in tests of hypotheses about instrumental variables models," Journal of Econometrics, Elsevier, vol. 222(2), pages 1057-1082.
    17. DUFOUR, Jean-Marie, 2001. "Logique et tests d'hypotheses: reflexions sur les problemes mal poses en econometrie," Cahiers de recherche 2001-15, Universite de Montreal, Departement de sciences economiques.
    18. Eric French, 2004. "The Labor Supply Response to (Mismeasured but) Predictable Wage Changes," The Review of Economics and Statistics, MIT Press, vol. 86(2), pages 602-613, May.
    19. van Dijk, H.K., 2002. "On Bayesian structural inference in a simultaneous equation model," Econometric Institute Research Papers EI 2002-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Joel L. Horowitz, 2017. "Non-asymptotic inference in instrumental variables estimation," CeMMAP working papers CWP46/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.