IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2000s-13.html
   My bibliography  Save this paper

Finite Sample Inference Methods for Simultaneous Equations and Models with Unobserved and Generated Regressors

Author

Listed:
  • Jean-Marie Dufour
  • Joann Jasiak

Abstract

We propose finite sample tests and confidence sets for models with unobserved and generated regressors as well as various models estimated by instrumental variables methods. The validity of the procedures is unaffected by the presence of identification problems or weak instruments, so no detection of such problems is required. We study two distinct approaches for various models considered by Pagan (1984). The first one is an instrument substitution method which generalizes an approach proposed by Anderson and Rubin (1949) and Fuller (1987) for different (although related) problems, while the second one is based on splitting the sample. The instrument substitution method uses the instruments directly, instead of generating regressors, in order to test hypotheses about the structural parameters of interest and build confidence sets. The second approach relies on generated regressors, which allows a gain in degrees of freedom, and a sample split technique. For inference about general possibly nonlinear transformations of model parameters, projection techniques are proposed. A distributional theory is obtained under the assumptions of Gaussian errors and stricly exogenous regressors. We show that the various tests and confidence sets proposed are (locally) asymptotically valid under much weaker assumptions. The properties of the tests proposed are examined in simulation experiments. In general, they outperform the usual asymptotic inference methods in terms of both reliability and power. Finally, the techniques suggested are applied to a model of Tobin's q and to a model of academic performance. Nous proposons des tests et régions de confiance exacts pour des modèles comportant des variables inobservées ou des régresseurs estimés de même que pour divers modèles estimés par la méthode des variables instrumentales. La validité des procédures proposées n'est pas influencée par la présence de problèmes d'identification ou d'instruments faibles, de sorte que la détection de tels problèmes n'est pas requise pour les appliquer. De façon plus spécifique, nous étudions deux approches différentes pour divers modèles considérés par Pagan (1984). La première est une méthode de substitution d'instruments qui généralise des techniques proposées par Anderson et Rubin (1949) et Fuller (1984) pour des problèmes différents, tandis que la seconde méthode est fondée sur une subdivision de l'échantillon. La méthode de substitution d'instruments utilise directement les instruments disponibles, plutôt que des régresseurs estimés, afin de tester des hypothèses et de construire des régions de confiance sur les paramètres structuraux du modèle. La seconde méthode s'appuie sur des régresseurs estimés, ce qui permet un gain de degrés de liberté, ainsi que sur une technique de subdivision de l'échantillon. Pour faire de l'inférence sur des transformations générales, possiblement non-linéaires, des paramètres du modèle, nous proposons l'utilisation de techniques de projection. Nous fournissons une théorie distributionnelle exacte sous une hypothèse de normalité des perturbations et de régresseurs strictement exogènes. Nous montrons que les tests et régions de confiance ainsi obtenus sont aussi (localement) asymptotiquement valides sous des hypothèses distributionnelles beaucoup plus faibles. Nous étudions les propriétés des tests proposés dans le cadre d'une expérience de simulation. En général, celles-ci sont plus fiables et ont une meilleure puissance que les techniques traditionnelles. Finalement, les techniques proposées sont appliquées à un modèle du q de Tobin et à un modèle de performance scolaire.

Suggested Citation

  • Jean-Marie Dufour & Joann Jasiak, 2000. "Finite Sample Inference Methods for Simultaneous Equations and Models with Unobserved and Generated Regressors," CIRANO Working Papers 2000s-13, CIRANO.
  • Handle: RePEc:cir:cirwor:2000s-13
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2000s-13.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kiviet, Jan F. & Dufour, Jean-Marie, 1997. "Exact tests in single equation autoregressive distributed lag models," Journal of Econometrics, Elsevier, vol. 80(2), pages 325-353, October.
    2. Abel, Andrew B & Eberly, Janice C, 1994. "A Unified Model of Investment under Uncertainty," American Economic Review, American Economic Association, vol. 84(5), pages 1369-1384, December.
    3. John Bound & David A. Jaeger & Regina Baker, 1993. "The Cure Can Be Worse than the Disease: A Cautionary Tale Regarding Instrumental Variables," NBER Technical Working Papers 0137, National Bureau of Economic Research, Inc.
    4. Zivot, Eric & Startz, Richard & Nelson, Charles R, 1998. "Valid Confidence Intervals and Inference in the Presence of Weak Instruments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1119-1146, November.
    5. Barro, Robert J, 1977. "Unanticipated Money Growth and Unemployment in the United States," American Economic Review, American Economic Association, vol. 67(2), pages 101-115, March.
    6. Nelson, Charles R & Startz, Richard, 1990. "The Distribution of the Instrumental Variables Estimator and Its t-Ratio When the Instrument Is a Poor One," The Journal of Business, University of Chicago Press, vol. 63(1), pages 125-140, January.
    7. Savin, N.E., 1984. "Multiple hypothesis testing," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 14, pages 827-879, Elsevier.
    8. Montmarquette, Claude & Mahseredjian, Sophie, 1989. "Could teacher grading practices account for unexplained variation in school achievements?," Economics of Education Review, Elsevier, vol. 8(4), pages 335-343, August.
    9. Joshua D. Angrist & Alan B. Krueger, 1993. "Split Sample Instrumental Variables," Working Papers 699, Princeton University, Department of Economics, Industrial Relations Section..
    10. DUFOUR, Jean-Marie & JASIAK, Joanna, 1998. "Finite-Sample Inference Methods for Simultaneous Equations and Models with Unobserved and Generated Regressors," Cahiers de recherche 9812, Universite de Montreal, Departement de sciences economiques.
    11. Dufour, Jean-Marie, 1989. "Nonlinear Hypotheses, Inequality Restrictions, and Non-nested Hypotheses: Exact Simultaneous Tests in Linear Regressions," Econometrica, Econometric Society, vol. 57(2), pages 335-355, March.
    12. Buse, A, 1992. "The Bias of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 60(1), pages 173-180, January.
    13. Murphy, Kevin M & Topel, Robert H, 2002. "Estimation and Inference in Two-Step Econometric Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 88-97, January.
    14. Abel, Andrew B & Blanchard, Olivier J, 1986. "The Present Value of Profits and Cyclical Movements in Investment," Econometrica, Econometric Society, vol. 54(2), pages 249-273, March.
    15. Jiahui Wang & Eric Zivot, 1998. "Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
    16. Hall, Alastair R & Rudebusch, Glenn D & Wilcox, David W, 1996. "Judging Instrument Relevance in Instrumental Variables Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(2), pages 283-298, May.
    17. Maddala, G S, 1974. "Some Small Sample Evidence on Tests of Significance in Simultaneous Equations Models," Econometrica, Econometric Society, vol. 42(5), pages 841-851, September.
    18. Oxley, Les & McAleer, Michael, 1993. "Econometric Issues in Macroeconomic Models with Generated Regressors," Journal of Economic Surveys, Wiley Blackwell, vol. 7(1), pages 1-40.
    19. Pagan, Adrian, 1984. "Econometric Issues in the Analysis of Regressions with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(1), pages 221-247, February.
    20. Dagenais, Marcel G & Dufour, Jean-Marie, 1991. "Invariance, Nonlinear Models, and Asymptotic Tests," Econometrica, Econometric Society, vol. 59(6), pages 1601-1615, November.
    21. Angrist, Joshua D & Krueger, Alan B, 1995. "Split-Sample Instrumental Variables Estimates of the Return to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 225-235, April.
    22. Tobin, James, 1969. "A General Equilibrium Approach to Monetary Theory," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 1(1), pages 15-29, February.
    23. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    24. Hayashi, Fumio, 1982. "Tobin's Marginal q and Average q: A Neoclassical Interpretation," Econometrica, Econometric Society, vol. 50(1), pages 213-224, January.
    25. Dufour, Jean-Marie & Kiviet, Jan F., 1996. "Exact tests for structural change in first-order dynamic models," Journal of Econometrics, Elsevier, vol. 70(1), pages 39-68, January.
    26. Maddala, G S & Jeong, Jinook, 1992. "On the Exact Small Sample Distribution of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 60(1), pages 181-183, January.
    27. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    28. John Shea, 1997. "Instrument Relevance in Multivariate Linear Models: A Simple Measure," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 348-352, May.
    29. Revankar, Nagesh & Mallela, Parthasaradhi, 1972. "The Power of an F-Test in the Context of a Structural Equation," Econometrica, Econometric Society, vol. 40(5), pages 913-915, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dufour, J.M., 2001. "Logique et tests d'hypotheses: reflexions sur les problemes mal poses en econometrie," Cahiers de recherche 2001-15, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    2. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    3. Benoit Perron, 2003. "Semiparametric Weak-Instrument Regressions with an Application to the Risk-Return Tradeoff," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 424-443, May.
    4. Dufour, Jean-Marie, 2001. "Logique et tests d’hypothèses," L'Actualité Economique, Société Canadienne de Science Economique, vol. 77(2), pages 171-190, juin.
    5. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    6. DUFOUR, Jean-Marie & JASIAK, Joanna, 1998. "Finite-Sample Inference Methods for Simultaneous Equations and Models with Unobserved and Generated Regressors," Cahiers de recherche 9812, Universite de Montreal, Departement de sciences economiques.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    2. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    3. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    4. Dufour, Jean-Marie, 2001. "Logique et tests d’hypothèses," L'Actualité Economique, Société Canadienne de Science Economique, vol. 77(2), pages 171-190, juin.
    5. DUFOUR, Jean-Marie, 2001. "Logique et tests d'hypotheses: reflexions sur les problemes mal poses en econometrie," Cahiers de recherche 2001-15, Universite de Montreal, Departement de sciences economiques.
    6. Paul A. Bekker & Jan van der Ploeg, 2000. "Instrumental Variable Estimation Based on Grouped Data," Econometric Society World Congress 2000 Contributed Papers 1862, Econometric Society.
    7. Jean‐Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(4), pages 767-808, November.
    8. Chao, John & Swanson, Norman R., 2007. "Alternative approximations of the bias and MSE of the IV estimator under weak identification with an application to bias correction," Journal of Econometrics, Elsevier, vol. 137(2), pages 515-555, April.
    9. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2006. "Inflation dynamics and the New Keynesian Phillips Curve: An identification robust econometric analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1707-1727.
    10. Benoit Perron, 2003. "Semiparametric Weak-Instrument Regressions with an Application to the Risk-Return Tradeoff," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 424-443, May.
    11. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
    12. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    13. Bekker, Paul A. & Ploeg, Jan van der, 2000. "Instrumental variable estimation based on grouped data," CCSO Working Papers 200009, University of Groningen, CCSO Centre for Economic Research.
    14. Angrist, J D & Imbens, G W & Krueger, A B, 1999. "Jackknife Instrumental Variables Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
    15. Jinyong Hahn & Atsushi Inoue, 2002. "A Monte Carlo Comparison Of Various Asymptotic Approximations To The Distribution Of Instrumental Variables Estimators," Econometric Reviews, Taylor & Francis Journals, vol. 21(3), pages 309-336.
    16. Mochen Yang & Edward McFowland & Gordon Burtch & Gediminas Adomavicius, 2022. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 138-155, October.
    17. repec:dgr:rugccs:200009 is not listed on IDEAS
    18. John Shea, 1997. "Instrument Relevance in Multivariate Linear Models: A Simple Measure," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 348-352, May.
    19. Jacques Mairesse & Bronwyn H. Hall & Benoît Mulkay, 1999. "Firm-Level Investment in France and the United States: An Exploration of What We Have Learned in Twenty Years," Annals of Economics and Statistics, GENES, issue 55-56, pages 27-67.
    20. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    21. Bekker, Paul A. & Lawford, Steve, 2008. "Symmetry-based inference in an instrumental variable setting," Journal of Econometrics, Elsevier, vol. 142(1), pages 28-49, January.

    More about this item

    Keywords

    Simultaneous equations; structural model; instrumental variables; weak instruments; generated regressor; Anderson-Rubin method; pivotal function; samplesplit; exact test; confidence region; projection techniques; Tobin's q; academic performance; Équations simultanées; modèle structurel; variables instrumentales; instruments faibles; régresseur estimé; méthode d'Anderson-Rubin; fonction pivotale; subdivision d'échantillon; inférence à distance finie; test exact; région de confiance; techniques de projection; q de Tobin; performance scolaire;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • E22 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Investment; Capital; Intangible Capital; Capacity
    • I2 - Health, Education, and Welfare - - Education
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2000s-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.