IDEAS home Printed from https://ideas.repec.org/p/nbp/nbpmis/200.html
   My bibliography  Save this paper

Output gap measure based on survey data

Author

Listed:
  • Michał Hulej
  • Grzegorz Grabek

Abstract

Following Nyman (2010), the paper provides an indicator of resource utilisation (RU) for the Polish economy based on survey and labour market data. The indicator is subsequently used to identify output gap. Using real-time dataset, we find that output gap constructed in this way is revised to a similar or (in recent years) lesser extent than a measure based on the Hodrick and Prescott filter and structural approach. Also, the output gap based on the RU indicator performs comparably to other approaches as a proxy of inflation pressure: real-time data evaluation exercise reveals that RMSE of Phillips curve inflation forecasts with the RU indicator-based output gap is similar to the RMSE of equivalent specifications with alternative gap measures.

Suggested Citation

  • Michał Hulej & Grzegorz Grabek, 2015. "Output gap measure based on survey data," NBP Working Papers 200, Narodowy Bank Polski.
  • Handle: RePEc:nbp:nbpmis:200
    as

    Download full text from publisher

    File URL: https://static.nbp.pl/publikacje/materialy-i-studia/200_en.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Claudio BorioBy & Piti Disyatat & Mikael Juselius, 2017. "Rethinking potential output: embedding information about the financial cycle," Oxford Economic Papers, Oxford University Press, vol. 69(3), pages 655-677.
    2. Clark, Todd E. & McCracken, Michael W., 2006. "The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1127-1148, August.
    3. Katarzyna Budnik & Michal Greszta & Michal Hulej & Marcin Kolasa & Karol Murawski & Michal Rot & Bartosz Rybaczyk & Magdalena Tarnicka, 2009. "The new macroeconometric model of the Polish economy," NBP Working Papers 62, Narodowy Bank Polski.
    4. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    5. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bank for International Settlements, 2023. "Inflation and labour markets," BIS Papers, Bank for International Settlements, number 142.
    2. Marcell Göttert & Timo Wollmershäuser, 2021. "Survey-Based Structural Budget Balances," CESifo Working Paper Series 8911, CESifo.
    3. Mohamed A. M. Sallam & Mohamed R. Neffati, 2019. "Estimation and Analysis of the Output Gap for the Saudi Economy; Econometric Study (1970-2016)," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 9(2), pages 267-284, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    2. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    3. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    4. Mayer, Walter J. & Liu, Feng & Dang, Xin, 2017. "Improving the power of the Diebold–Mariano–West test for least squares predictions," International Journal of Forecasting, Elsevier, vol. 33(3), pages 618-626.
    5. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    6. Shu-Ling Chen & John D. Jackson & Hyeongwoo Kim & Pramesti Resiandini, 2014. "What Drives Commodity Prices?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(5), pages 1455-1468.
    7. Clark, Todd E. & McCracken, Michael W., 2015. "Nested forecast model comparisons: A new approach to testing equal accuracy," Journal of Econometrics, Elsevier, vol. 186(1), pages 160-177.
    8. Pablo Pincheira & Jorge Selaive, 2011. "External imbalance, valuation adjustments and real Exchange rate: evidence of predictability in an emerging economy," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 26(1), pages 107-125, Junio.
    9. Nii Ayi Armah & Norman Swanson, 2011. "Some variables are more worthy than others: new diffusion index evidence on the monitoring of key economic indicators," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 43-60.
    10. Luke Hartigan & Tom Rosewall, 2024. "Nowcasting Quarterly GDP Growth during the COVID-19 Crisis Using a Monthly Activity Indicator," Working Papers 2024-15, University of Sydney, School of Economics.
    11. Todd E. Clark & Michael W. McCracken, 2009. "Combining Forecasts from Nested Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 303-329, June.
    12. Caio Almeida & Kym Ardison & Daniela Kubudi & Axel Simonsen & José Vicente, 2018. "Forecasting Bond Yields with Segmented Term Structure Models," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 1-33.
    13. Matthias Burgert & Stephane Dees, 2009. "Forecasting World Trade: Direct Versus “Bottom-Up” Approaches," Open Economies Review, Springer, vol. 20(3), pages 385-402, July.
    14. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    15. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    16. Boriss Siliverstovs & Daniel Wochner, 2019. "Recessions as Breadwinner for Forecasters State-Dependent Evaluation of Predictive Ability: Evidence from Big Macroeconomic US Data," KOF Working papers 19-463, KOF Swiss Economic Institute, ETH Zurich.
    17. Bahar Şen Doğan & Murat Midiliç, 2019. "Forecasting Turkish real GDP growth in a data-rich environment," Empirical Economics, Springer, vol. 56(1), pages 367-395, January.
    18. Clark, Todd E. & McCracken, Michael W., 2009. "Tests of Equal Predictive Ability With Real-Time Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 441-454.
    19. Graham Elliott & Allan Timmermann, 2016. "Forecasting in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 81-110, October.
    20. Sekkel, Rodrigo M., 2015. "Balance sheets of financial intermediaries: Do they forecast economic activity?," International Journal of Forecasting, Elsevier, vol. 31(2), pages 263-275.

    More about this item

    Keywords

    Principal component; Output gap; Trend-cycle decomposition; Inflation forecast; Real-time analysis.;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbp:nbpmis:200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jakub Growiec (email available below). General contact details of provider: https://edirc.repec.org/data/nbpgvpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.