IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2015-17.html
   My bibliography  Save this paper

Cross-sectional Independence Test for a Class of Parametric Panel Data Models

Author

Listed:
  • Guangming Pan
  • Jiti Gao
  • Yanrong Yang
  • Meihui Guo

Abstract

This paper proposes a new statistic to conduct cross-sectional independence test for the residuals involved in a parametric panel data model. The proposed test statistic, which is called linear spectral statistic (LSS), is established based on the characteristic function of the empirical spectral distribution (ESD) of the sample correlation matrix of the residuals. The main advantage of the proposed test statistic is that it can capture nonlinear cross-sectional dependence. Asymptotic theory for a general class of linear spectral statistics is established, as the cross-sectional dimension N and time length T go to infinity proportionally. This type of statistics covers many classical statistics, including the bias-corrected Lagrange Multiplier (LM) test statistic and the likelihood ratio test statistic. Furthermore, the power under a local alternative hypothesis is analyzed and the asymptotic distribution of the proposed statistic under this local hypothesis is also established. Finite sample performance shows that the proposed test statistic works well numerically in each individual case and it can also distinguish some dependent but uncorrelated structures, for example, nonlinear MA(1) models and multiple ARCH(1) models.

Suggested Citation

  • Guangming Pan & Jiti Gao & Yanrong Yang & Meihui Guo, 2015. "Cross-sectional Independence Test for a Class of Parametric Panel Data Models," Monash Econometrics and Business Statistics Working Papers 17/15, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2015-17
    as

    Download full text from publisher

    File URL: https://www.monash.edu/__data/assets/pdf_file/0009/925875/wp17-15.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Hashem Pesaran & Aman Ullah & Takashi Yamagata, 2008. "A bias-adjusted LM test of error cross-section independence," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 105-127, March.
    2. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    3. James R. Schott, 2005. "Testing for complete independence in high dimensions," Biometrika, Biometrika Trust, vol. 92(4), pages 951-956, December.
    4. Dozier, R. Brent & Silverstein, Jack W., 2007. "On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 678-694, April.
    5. Kuan Chung-Ming & Lee Wei-Ming, 2004. "A New Test of the Martingale Difference Hypothesis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(4), pages 1-26, December.
    6. Jiti Gao & Xiao Han & Guangming Pan & Yanrong Yang, 2014. "High Dimensional Correlation Matrices: CLT and Its Applications," Monash Econometrics and Business Statistics Working Papers 26/14, Monash University, Department of Econometrics and Business Statistics.
    7. Hsiao, C. & Pesaran, M.H. & Pick, A., 2007. "Diagnostic Tests of Cross Section Independence for Nonlinear Panel Data Models," Cambridge Working Papers in Economics 0716, Faculty of Economics, University of Cambridge.
    8. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2012. "A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model," Journal of Econometrics, Elsevier, vol. 170(1), pages 164-177.
    9. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    10. Hsiao, Cheng & Pesaran, M. Hashem & Pick, Andreas, 2007. "Diagnostic Tests of Cross Section Independence for Nonlinear Panel Data Models," IZA Discussion Papers 2756, Institute of Labor Economics (IZA).
    11. Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
    12. Su, Liangjun & Ullah, Aman, 2009. "Testing Conditional Uncorrelatedness," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 18-29.
    13. Chen, Jia & Gao, Jiti & Li, Degui, 2012. "A New Diagnostic Test For Cross-Section Uncorrelatedness In Nonparametric Panel Data Models," Econometric Theory, Cambridge University Press, vol. 28(5), pages 1144-1163, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dogan, Eyup & Altinoz, Buket & Madaleno, Mara & Taskin, Dilvin, 2020. "The impact of renewable energy consumption to economic growth: A replication and extension of Inglesi-Lotz (2016)," Energy Economics, Elsevier, vol. 90(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Pan & J. Gao & Y. Yang & M. Guo, 2012. "Independence Test for High Dimensional Random Vectors," Monash Econometrics and Business Statistics Working Papers 1/12, Monash University, Department of Econometrics and Business Statistics.
    2. Wang, Hongfei & Liu, Binghui & Feng, Long & Ma, Yanyuan, 2024. "Rank-based max-sum tests for mutual independence of high-dimensional random vectors," Journal of Econometrics, Elsevier, vol. 238(1).
    3. Zhaoyuan Li & Jianfeng Yao, 2021. "Extension of the Lagrange multiplier test for error cross-section independence to large panels with non normal errors," Papers 2103.06075, arXiv.org.
    4. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    5. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2016. "Estimation of heterogeneous panels with structural breaks," Journal of Econometrics, Elsevier, vol. 191(1), pages 176-195.
    6. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    7. Auteri, Monica & Mele, Marco & Ruble, Isabella & Magazzino, Cosimo, 2024. "The double sustainability: The link between government debt and renewable energy," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
    8. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2012. "A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model," Journal of Econometrics, Elsevier, vol. 170(1), pages 164-177.
    9. Farrukh, Bekpulatov & Younis, Ijaz & Longsheng, Cheng, 2023. "The impact of natural resource management, innovation, and tourism development on environmental sustainability in low-income countries," Resources Policy, Elsevier, vol. 86(PB).
    10. Mahmut Unsal Sasmaz & Emre Sakar & Yunus Emre Yayla & Ulas Akkucuk, 2020. "The Relationship between Renewable Energy and Human Development in OECD Countries: A Panel Data Analysis," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    11. Durusu-Ciftci, Dilek & Ispir, M. Serdar & Kok, Dundar, 2019. "Do stock markets follow a random walk? New evidence for an old question," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 165-175.
    12. Peng, Bin & Yu, Junqi & Zhu, Yi, 2021. "A heteroskedasticity robust test for cross-sectional correlation in a fixed effects panel data model," Economics Letters, Elsevier, vol. 201(C).
    13. Busra Agan & Mehmet Balcilar, 2022. "On the Determinants of Green Technology Diffusion: An Empirical Analysis of Economic, Social, Political, and Environmental Factors," Sustainability, MDPI, vol. 14(4), pages 1-23, February.
    14. Laeeq Razzak Janjua & Orhan Sanli & Mirela Panait & Mirela Cristea & Atteeq Razzak, 2024. "Impact of energy security and economic growth on poverty: sample of Sub-Saharan Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 25459-25484, October.
    15. Muhammad Shafiullah & Vassilios G. Papavassiliou & Muhammad Shahbaz, 2021. "Is There an Extended Education-Based Environmental Kuznets Curve? An Analysis of U.S. States," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(4), pages 795-819, December.
    16. Sharma, Gagan Deep & Tiwari, Aviral Kumar & Erkut, Burak & Mundi, Hardeep Singh, 2021. "Exploring the nexus between non-renewable and renewable energy consumptions and economic development: Evidence from panel estimations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    17. Mammadova, Aytan & Mammadova, Leyla & Mammadov, Fuad & Yusifzade, Leyla, 2016. "Determinants of depositors’ behaviour: Heterogeneous panel estimates," MPRA Paper 72159, University Library of Munich, Germany.
    18. Serif Canbay & Mustafa Kırca & Erkan Oflaz, 2021. "Relationships Between Defence Expenditures and Economic Growth in G7 Countries Panel Bootstrap Causality Analysis," Bingol University Journal of Economics and Administrative Sciences, Bingol University, Faculty of Economics and Administrative Sciences, vol. 5(1), pages 119-140, August.
    19. Recep Ulucak & Ali Gökhan Yücel & Salih Çağrı İlkay, 2020. "Dynamics of tourism demand in Turkey: Panel data analysis using gravity model," Tourism Economics, , vol. 26(8), pages 1394-1414, December.
    20. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.

    More about this item

    Keywords

    Characteristic function; cross–sectional independence; empirical spectral distribution; linear panel data models; Marcenko-Pastur Law;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2015-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.