IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v153y2021ics0167947320301614.html
   My bibliography  Save this article

Rank-based tests of cross-sectional dependence in panel data models

Author

Listed:
  • Feng, Long
  • Zhao, Ping
  • Ding, Yanling
  • Liu, Binghui

Abstract

In the study of panel regression, current existing cross-sectional dependence tests are mainly based on the normal assumption. However, in practical applications, the normal assumption is usually not valid, which weakens the usability of the tests. To develop more testing tools suitable for nonnormal panel data, we extend the rank-based framework of U-statistics to panel regressions, and derive their asymptotic null distributions respectively as (N,T)→∞. The results of some simulation results and a real data analysis demonstrate the superiority of the proposed tests, especially their robustness to deviation from normality.

Suggested Citation

  • Feng, Long & Zhao, Ping & Ding, Yanling & Liu, Binghui, 2021. "Rank-based tests of cross-sectional dependence in panel data models," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
  • Handle: RePEc:eee:csdana:v:153:y:2021:i:c:s0167947320301614
    DOI: 10.1016/j.csda.2020.107070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320301614
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrews, Donald W. K., 1987. "Asymptotic Results for Generalized Wald Tests," Econometric Theory, Cambridge University Press, vol. 3(3), pages 348-358, June.
    2. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2012. "A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model," Journal of Econometrics, Elsevier, vol. 170(1), pages 164-177.
    3. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    4. Luca Weihs & Mathias Drton & Dennis Leung, 2016. "Efficient computation of the Bergsma–Dassios sign covariance," Computational Statistics, Springer, vol. 31(1), pages 315-328, March.
    5. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    6. Donald W. K. Andrews, 2005. "Cross-Section Regression with Common Shocks," Econometrica, Econometric Society, vol. 73(5), pages 1551-1585, September.
    7. Matei Demetrescu & Ulrich Homm, 2016. "Directed Tests of No Cross‐Sectional Correlation in Large‐N Panel Data Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 4-31, January.
    8. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    9. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    10. M. Hashem Pesaran & Aman Ullah & Takashi Yamagata, 2008. "A bias-adjusted LM test of error cross-section independence," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 105-127, March.
    11. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    12. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    13. Mao, Guangyu, 2018. "Testing independence in high dimensions using Kendall’s tau," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 128-137.
    14. M. Hashem Pesaran, 2015. "Testing Weak Cross-Sectional Dependence in Large Panels," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1089-1117, December.
    15. Francesco Moscone & Elisa Tosetti, 2009. "A Review And Comparison Of Tests Of Cross‐Section Independence In Panels," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 528-561, July.
    16. Frees, Edward W., 1995. "Assessing cross-sectional correlation in panel data," Journal of Econometrics, Elsevier, vol. 69(2), pages 393-414, October.
    17. Srivastava, Muni S. & Katayama, Shota & Kano, Yutaka, 2013. "A two sample test in high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 349-358.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Li & Mi Zhou & Huaping Sun & Jia Liu, 2023. "Assessment of environmental tax and green bonds impacts on energy efficiency in the European Union," Economic Change and Restructuring, Springer, vol. 56(2), pages 1063-1081, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demetrescu, Matei & Hosseinkouchack, Mehdi & Rodrigues, Paulo M. M., 2023. "Tests of no cross-sectional error dependence in panel quantile regressions," Ruhr Economic Papers 1041, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    2. Wang, Hongfei & Liu, Binghui & Feng, Long & Ma, Yanyuan, 2024. "Rank-based max-sum tests for mutual independence of high-dimensional random vectors," Journal of Econometrics, Elsevier, vol. 238(1).
    3. Halunga, Andreea G. & Orme, Chris D. & Yamagata, Takashi, 2017. "A heteroskedasticity robust Breusch–Pagan test for Contemporaneous correlation in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 198(2), pages 209-230.
    4. Paulo M.M. Rodrigues & Matei Demetrescu, 2022. "Cross-Sectional Error Dependence in Panel Quantile Regressions," Working Papers w202213, Banco de Portugal, Economics and Research Department.
    5. Hikmet Akyol & Selim Basar, 2024. "Empirical Analysis of Turkish Banking Sector Institutional and Macroeconomic Determinants of Risks," Istanbul Journal of Economics-Istanbul Iktisat Dergisi, Istanbul University, Faculty of Economics, vol. 73(74-1), pages 59-98, June.
    6. Schneider, Nicolas & Strielkowski, Wadim, 2023. "Modelling the unit root properties of electricity data—A general note on time-domain applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    7. Alexander Chudik & M. Hashem Pesaran, 2013. "Large panel data models with cross-sectional dependence: a survey," Globalization Institute Working Papers 153, Federal Reserve Bank of Dallas.
    8. Badi H. Baltagi & Chihwa Kao & Fa Wang, 2017. "Asymptotic power of the sphericity test under weak and strong factors in a fixed effects panel data model," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 853-882, October.
    9. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2012. "A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model," Journal of Econometrics, Elsevier, vol. 170(1), pages 164-177.
    10. Peng, Bin & Yu, Junqi & Zhu, Yi, 2021. "A heteroskedasticity robust test for cross-sectional correlation in a fixed effects panel data model," Economics Letters, Elsevier, vol. 201(C).
    11. Long Feng & Tiefeng Jiang & Binghui Liu & Wei Xiong, 2020. "Max-sum tests for cross-sectional dependence of high-demensional panel data," Papers 2007.03911, arXiv.org.
    12. Zhenhong Huang & Zhaoyuan Li & Jianfeng Yao, 2023. "Unified and robust Lagrange multiplier type tests for cross-sectional independence in large panel data models," Papers 2302.14387, arXiv.org.
    13. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2016. "Estimation of heterogeneous panels with structural breaks," Journal of Econometrics, Elsevier, vol. 191(1), pages 176-195.
    14. Muhammad Shafiullah & Luke Emeka Okafor & Usman Khalid, 2019. "Determinants of international tourism demand: Evidence from Australian states and territories," Tourism Economics, , vol. 25(2), pages 274-296, March.
    15. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    16. M. Hashem Pesaran, 2015. "Testing Weak Cross-Sectional Dependence in Large Panels," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1089-1117, December.
    17. Liu, Xia, 2023. "Tourism development, environmental regulations, and natural resource management: Evidence from G20 countries," Resources Policy, Elsevier, vol. 86(PA).
    18. Badi H. Baltagi & Chihwa Kao & Bin Peng, 2016. "Testing Cross-Sectional Correlation in Large Panel Data Models with Serial Correlation," Econometrics, MDPI, vol. 4(4), pages 1-24, November.
    19. Auteri, Monica & Mele, Marco & Ruble, Isabella & Magazzino, Cosimo, 2024. "The double sustainability: The link between government debt and renewable energy," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
    20. Michael Appiah & Bright Akwasi Gyamfi & Tomiwa Sunday Adebayo & Festus Victor Bekun, 2023. "Do financial development, foreign direct investment, and economic growth enhance industrial development? Fresh evidence from Sub-Sahara African countries," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 22(2), pages 203-227, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:153:y:2021:i:c:s0167947320301614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.