IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp2756.html
   My bibliography  Save this paper

Diagnostic Tests of Cross Section Independence for Nonlinear Panel Data Models

Author

Listed:
  • Hsiao, Cheng

    (University of Southern California)

  • Pesaran, M. Hashem

    (University of Cambridge)

  • Pick, Andreas

    (University of Cambridge)

Abstract

In this paper we discuss tests for residual cross section dependence in nonlinear panel data models. The tests are based on average pair-wise residual correlation coefficients. In nonlinear models, the definition of the residual is ambiguous and we consider two approaches: deviations of the observed dependent variable from its expected value and generalized residuals. We show the asymptotic consistency of the cross section dependence (CD) test of Pesaran (2004). In Monte Carlo experiments it emerges that the CD test has the correct size for any combination of N and T whereas the LM test relies on T large relative to N. We then analyze the roll-call votes of the 104th U.S. Congress and find considerable dependence between the votes of the members of Congress.

Suggested Citation

  • Hsiao, Cheng & Pesaran, M. Hashem & Pick, Andreas, 2007. "Diagnostic Tests of Cross Section Independence for Nonlinear Panel Data Models," IZA Discussion Papers 2756, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp2756
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp2756.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. M. Hashem Pesaran & Aman Ullah & Takashi Yamagata, 2008. "A bias-adjusted LM test of error cross-section independence," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 105-127, March.
    2. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    3. H. Kelejian, Harry & Prucha, Ingmar R., 2001. "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Elsevier, vol. 104(2), pages 219-257, September.
    4. Frees, Edward W., 1995. "Assessing cross-sectional correlation in panel data," Journal of Econometrics, Elsevier, vol. 69(2), pages 393-414, October.
    5. Chesher, Andrew & Irish, Margaret, 1987. "Residual analysis in the grouped and censored normal linear model," Journal of Econometrics, Elsevier, vol. 34(1-2), pages 33-61.
    6. Gary Chamberlain, 1980. "Analysis of Covariance with Qualitative Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 225-238.
    7. Gourieroux, C. & Monfort, A. & Trognon, A., 1985. "A General Approach to Serial Correlation," Econometric Theory, Cambridge University Press, vol. 1(3), pages 315-340, December.
    8. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    9. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    10. Lee, Lung-Fei, 2002. "Consistency And Efficiency Of Least Squares Estimation For Mixed Regressive, Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 252-277, April.
    11. Ullah, Aman, 2004. "Finite Sample Econometrics," OUP Catalogue, Oxford University Press, number 9780198774488.
    12. Gourieroux, Christian & Monfort, Alain & Renault, Eric & Trognon, Alain, 1987. "Generalised residuals," Journal of Econometrics, Elsevier, vol. 34(1-2), pages 5-32.
    13. Ng, Serena, 2006. "Testing Cross-Section Correlation in Panel Data Using Spacings," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 12-23, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    2. G. Pan & J. Gao & Y. Yang & M. Guo, 2012. "Independence Test for High Dimensional Random Vectors," Monash Econometrics and Business Statistics Working Papers 1/12, Monash University, Department of Econometrics and Business Statistics.
    3. Amegashie, J. Atsu & Ouattara, Bazoumanna & Strobl, Eric, 2007. "Moral Hazard and the Composition of Transfers: Theory with an Application to Foreign Aid," MPRA Paper 3158, University Library of Munich, Germany, revised 06 May 2007.
    4. Leyla Mammadova & Aytan Mammadova & Fuad Mammadov & Leyla Yusifzada, 2016. "Determinants of Depositors’ Behaviour: Heterogeneous Panel Estimates," Working Papers 1603, Central Bank of Azerbaijan Republic.
    5. Nikos Benos & Nikolaos Mylonidis & Stefania Zotou, 2017. "Estimating production functions for the US states: the role of public and human capital," Empirical Economics, Springer, vol. 52(2), pages 691-721, March.
    6. Martí Ballester, Carmen Pilar, 2013. "Determinants of equity pension plan flows," Economics Discussion Papers 2013-15, Kiel Institute for the World Economy (IfW Kiel).
    7. Carmen Pilar Marti & M. Rosa Rovira‐Val & Lisa G. J. Drescher, 2015. "Are Firms that Contribute to Sustainable Development Better Financially?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 22(5), pages 305-319, September.
    8. Carmen Pilar Martí Ballester, 2014. "Determinants of equity pension plan flows," Estudios de Economia, University of Chile, Department of Economics, vol. 41(1 Year 20), pages 125-148, June.
    9. Silvia Lui & James Mitchell & Martin Weale, 2011. "Qualitative business surveys: signal or noise?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(2), pages 327-348, April.
    10. Zeidan, Rodrigo & Müllner, Jakob, 2015. "Firm, market and top management antecedents of speculation: Lessons for corporate governance," Journal of Multinational Financial Management, Elsevier, vol. 32, pages 42-58.
    11. George Halkos & George Ekonomou, 2023. "Can Business and Leisure Tourism Spending Lead to Lower Environmental Degradation Levels? Research on the Eurozone Economic Space," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
    12. Guangming Pan & Jiti Gao & Yanrong Yang & Meihui Guo, 2015. "Cross-sectional Independence Test for a Class of Parametric Panel Data Models," Monash Econometrics and Business Statistics Working Papers 17/15, Monash University, Department of Econometrics and Business Statistics.
    13. Li Yang & Sumaiya Bashiru Danwana & Fadilul-lah Yassaanah Issahaku, 2022. "Achieving Environmental Sustainability in Africa: The Role of Renewable Energy Consumption, Natural Resources, and Government Effectiveness—Evidence from Symmetric and Asymmetric ARDL Models," IJERPH, MDPI, vol. 19(13), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2012. "A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model," Journal of Econometrics, Elsevier, vol. 170(1), pages 164-177.
    2. Alexander Chudik & M. Hashem Pesaran, 2013. "Large panel data models with cross-sectional dependence: a survey," Globalization Institute Working Papers 153, Federal Reserve Bank of Dallas.
    3. Francesco Moscone & Elisa Tosetti, 2009. "A Review And Comparison Of Tests Of Cross‐Section Independence In Panels," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 528-561, July.
    4. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2016. "Estimation of heterogeneous panels with structural breaks," Journal of Econometrics, Elsevier, vol. 191(1), pages 176-195.
    5. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    6. Christoph Strumann, 2019. "Hodges–Lehmann Estimation of Static Panel Models with Spatially Correlated Disturbances," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 141-168, January.
    7. Badi H. Baltagi & Qu Feng & Chihwa Kao, 2009. "Testing for Sphericity in a Fixed Effects Panel Data Model (Revised July 2009)," Center for Policy Research Working Papers 112, Center for Policy Research, Maxwell School, Syracuse University.
    8. Wang, Hongfei & Liu, Binghui & Feng, Long & Ma, Yanyuan, 2024. "Rank-based max-sum tests for mutual independence of high-dimensional random vectors," Journal of Econometrics, Elsevier, vol. 238(1).
    9. Sarafidis, Vasilis & Yamagata, Takashi & Robertson, Donald, 2009. "A test of cross section dependence for a linear dynamic panel model with regressors," Journal of Econometrics, Elsevier, vol. 148(2), pages 149-161, February.
    10. Yang, Zhenlin, 2015. "A general method for third-order bias and variance corrections on a nonlinear estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 178-200.
    11. M. Hashem Pesaran, 2015. "Testing Weak Cross-Sectional Dependence in Large Panels," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1089-1117, December.
    12. Furkan Emirmahmutoglu & Mehmet Balcilar & Nicholas Apergis & Beatrice D. Simo-Kengne & Tsangyao Chang & Rangan Gupta, 2014. "Causal relationship between asset prices and output in the US: Evidence from state-level panel Granger causality test," Working Papers 201411, University of Pretoria, Department of Economics.
    13. Gilhooly, Robert & Weale, Martin & Wieladek, Tomasz, 2015. "Estimation of short dynamic panels in the presence of cross-sectional dependence and dynamic eterogeneity," Discussion Papers 38, Monetary Policy Committee Unit, Bank of England.
    14. M. Hashem Pesaran & Aman Ullah & Takashi Yamagata, 2008. "A bias-adjusted LM test of error cross-section independence," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 105-127, March.
    15. Afef Bouattour & Maha Kalai & Kamel Helali, 2024. "The non-linear relationship between ESG performance and bank stability in the digital era: new evidence from a regime-switching approach," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-17, December.
    16. repec:ipg:wpaper:2014-466 is not listed on IDEAS
    17. Schneider, Nicolas & Strielkowski, Wadim, 2023. "Modelling the unit root properties of electricity data—A general note on time-domain applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    18. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    19. Feng, Long & Zhao, Ping & Ding, Yanling & Liu, Binghui, 2021. "Rank-based tests of cross-sectional dependence in panel data models," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    20. Badi H. Baltagi & Chihwa Kao & Fa Wang, 2017. "Asymptotic power of the sphericity test under weak and strong factors in a fixed effects panel data model," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 853-882, October.
    21. Halunga, Andreea G. & Orme, Chris D. & Yamagata, Takashi, 2017. "A heteroskedasticity robust Breusch–Pagan test for Contemporaneous correlation in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 198(2), pages 209-230.

    More about this item

    Keywords

    cross-section dependence; nonlinear panel data model;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp2756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.