IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2014-22.html
   My bibliography  Save this paper

Determination of long-run and short-run dynamics in EC-VARMA models via canonical correlations

Author

Listed:
  • George Athanasopoulos
  • D.S. Poskitt
  • Farshid Vahid
  • Wenying Yao

Abstract

This article studies a simple, coherent approach for identifying and estimating error correcting vector autoregressive moving average (EC-VARMA) models. Canonical correlation analysis is implemented for both determining the cointegrating rank, using a strongly consistent method, and identifying the short-run VARMA dynamics, using the scalar component methodology. Finite sample performances are evaluated via Monte-Carlo simulations and the approach is applied to model and forecast US interest rates. The results reveal that EC-VARMA models generate significantly more accurate out-of-sample forecasts than vector error correction models (VECMs), especially for short horizons.

Suggested Citation

  • George Athanasopoulos & D.S. Poskitt & Farshid Vahid & Wenying Yao, 2014. "Determination of long-run and short-run dynamics in EC-VARMA models via canonical correlations," Monash Econometrics and Business Statistics Working Papers 22/14, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2014-22
    as

    Download full text from publisher

    File URL: http://business.monash.edu/econometrics-and-business-statistics/research/publications/ebs/wp22-14.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. George Athanasopoulos & D. Poskitt & Farshid Vahid, 2012. "Two Canonical VARMA Forms: Scalar Component Models Vis-à-Vis the Echelon Form," Econometric Reviews, Taylor & Francis Journals, vol. 31(1), pages 60-83.
    2. Lutkepohl, Helmut & Claessen, Holger, 1997. "Analysis of cointegrated VARMA processes," Journal of Econometrics, Elsevier, vol. 80(2), pages 223-239, October.
    3. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    4. Christian Kascha, 2012. "A Comparison of Estimation Methods for Vector Autoregressive Moving-Average Models," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 297-324.
    5. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
    6. Lutkepohl, Helmut & Poskitt, D S, 1996. "Specification of Echelon-Form VARMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 69-79, January.
    7. Christian Kascha & Carsten Trenkler, 2015. "Simple Identification and Specification of Cointegrated Varma Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 675-702, June.
    8. Hall, Anthony D & Anderson, Heather M & Granger, Clive W J, 1992. "A Cointegration Analysis of Treasury Bill Yields," The Review of Economics and Statistics, MIT Press, vol. 74(1), pages 116-126, February.
    9. Yang, Minxian & Bewley, Ronald, 1996. "On cointegration tests for VAR models with drift," Economics Letters, Elsevier, vol. 51(1), pages 45-50, April.
    10. Poskitt, D. S., 2003. "On the specification of cointegrated autoregressive moving-average forecasting systems," International Journal of Forecasting, Elsevier, vol. 19(3), pages 503-519.
    11. Poskitt, Don S, 2000. "Strongly Consistent Determination of Cointegrating Rank via Canonical Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 77-90, January.
    12. Athanasopoulos, George & Vahid, Farshid, 2008. "VARMA versus VAR for Macroeconomic Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 237-252, April.
    13. Kapetanios, George, 2003. "A note on an iterative least-squares estimation method for ARMA and VARMA models," Economics Letters, Elsevier, vol. 79(3), pages 305-312, June.
    14. Kapetanios, George, 2003. "A note on an iterative least-squares estimation method for ARMA and VARMA models," Economics Letters, Elsevier, vol. 79(3), pages 305-312, June.
    15. Lütkepohl, H. & Poskitt, D. S., 1996. "Consistent Estimation of the Number of Cointegration Relations in a Vector Autoregressive Model," SFB 373 Discussion Papers 1996,74, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivan Mendieta-Munoz & Mengheng Li, 2019. "The Multivariate Simultaneous Unobserved Compenents Model and Identification via Heteroskedasticity," Working Paper Series, Department of Economics, University of Utah 2019_06, University of Utah, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Athanasopouolos, George & Poskitt, Don & Vahid, Farshid & Yao, Wenying, 2014. "Forecasting with EC-VARMA models," Working Papers 2014-07, University of Tasmania, Tasmanian School of Business and Economics, revised 22 Feb 2014.
    2. Jean-Marie Dufour & Tarek Jouini, 2011. "Asymptotic Distributions for Some Quasi-Efficient Estimators in Echelon VARMA Models," CIRANO Working Papers 2011s-25, CIRANO.
    3. Dias, Gustavo Fruet & Kapetanios, George, 2018. "Estimation and forecasting in vector autoregressive moving average models for rich datasets," Journal of Econometrics, Elsevier, vol. 202(1), pages 75-91.
    4. Marie-Christine Duker & David S. Matteson & Ruey S. Tsay & Ines Wilms, 2024. "Vector AutoRegressive Moving Average Models: A Review," Papers 2406.19702, arXiv.org.
    5. Gil-Alana, Luis A. & Gupta, Rangan & Olubusoye, Olusanya E. & Yaya, OlaOluwa S., 2016. "Time series analysis of persistence in crude oil price volatility across bull and bear regimes," Energy, Elsevier, vol. 109(C), pages 29-37.
    6. D. S. Poskitt, 2004. "On The Identification and Estimation of Partially Nonstationary ARMAX Systems," Monash Econometrics and Business Statistics Working Papers 20/04, Monash University, Department of Econometrics and Business Statistics.
    7. Joshua C.C. Chan & Eric Eisenstat, 2015. "Efficient estimation of Bayesian VARMAs with time-varying coefficients," CAMA Working Papers 2015-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    8. Helmut Luetkepohl, 2007. "Econometric Analysis with Vector Autoregressive Models," Economics Working Papers ECO2007/11, European University Institute.
    9. Christian Kascha & Carsten Trenkler, 2011. "Cointegrated VARMA models and forecasting US interest rates," ECON - Working Papers 033, Department of Economics - University of Zurich.
    10. Kirstin Hubrich & Helmut Lutkepohl & Pentti Saikkonen, 2001. "A Review Of Systems Cointegration Tests," Econometric Reviews, Taylor & Francis Journals, vol. 20(3), pages 247-318.
    11. Lütkepohl, Helmut, 1999. "Vector autoregressions," SFB 373 Discussion Papers 1999,4, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    12. Christian Kascha, 2012. "A Comparison of Estimation Methods for Vector Autoregressive Moving-Average Models," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 297-324.
    13. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871, January.
    14. George Athanasopoulos & D. Poskitt & Farshid Vahid, 2012. "Two Canonical VARMA Forms: Scalar Component Models Vis-à-Vis the Echelon Form," Econometric Reviews, Taylor & Francis Journals, vol. 31(1), pages 60-83.
    15. Lütkepohl, Helmut, 1999. "Vector autoregressive analysis," SFB 373 Discussion Papers 1999,31, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    16. D.S. Poskitt, 2009. "Vector Autoregresive Moving Average Identification for Macroeconomic Modeling: Algorithms and Theory," Monash Econometrics and Business Statistics Working Papers 12/09, Monash University, Department of Econometrics and Business Statistics.
    17. Poskitt, D. S., 2003. "On the specification of cointegrated autoregressive moving-average forecasting systems," International Journal of Forecasting, Elsevier, vol. 19(3), pages 503-519.
    18. Martin Wagner, 2010. "Cointegration analysis with state space models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(3), pages 273-305, September.
    19. Biqing Cai & Jiti Gao & Dag Tjøstheim, 2017. "A New Class of Bivariate Threshold Cointegration Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 288-305, April.
    20. Jackson, William III & Eisenbeis, Robert A., 1997. "Geographic integration of bank deposit markets and restrictions on interstate banking: A cointegration approach," Journal of Economics and Business, Elsevier, vol. 49(4), pages 335-346.

    More about this item

    Keywords

    Cointegration; Error correction; Scalar Component Model; Multivariate Time Series.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2014-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.