IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2006-4.html
   My bibliography  Save this paper

VARMA versus VAR for Macroeconomic Forecasting

Author

Listed:
  • George Athanasopoulos
  • Farshid Vahid

Abstract

In this paper, we argue that there is no compelling reason for restricting the class of multivariate models considered for macroeconomic forecasting to VARs given the recent advances in VARMA modelling methodology and improvements in computing power. To support this claim, we use real macroeconomic data and show that VARMA models forecast macroeconomic variables more accurately than VAR models.

Suggested Citation

  • George Athanasopoulos & Farshid Vahid, 2006. "VARMA versus VAR for Macroeconomic Forecasting," Monash Econometrics and Business Statistics Working Papers 4/06, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2006-4
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2006/wp4-06.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. George Athanasopoulos & Farshid Vahid, 2008. "A complete VARMA modelling methodology based on scalar components," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 533-554, May.
    2. Lutkepohl, Helmut & Poskitt, D S, 1996. "Specification of Echelon-Form VARMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 69-79, January.
    3. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    4. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    5. Clements, M.P. & Hendry, D., 1992. "On the Limitations of Comparing Mean Square Forecast Errors," Economics Series Working Papers 99138, University of Oxford, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Athanasopoulos & D. Poskitt & Farshid Vahid, 2012. "Two Canonical VARMA Forms: Scalar Component Models Vis-à-Vis the Echelon Form," Econometric Reviews, Taylor & Francis Journals, vol. 31(1), pages 60-83.
    2. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    3. Dennis L. Hoffman & Robert H. Rasche, 1997. "STLS/US-VECM6.1: a vector error-correction forecasting model of the U. S. economy," Working Papers 1997-008, Federal Reserve Bank of St. Louis.
    4. Hendry, David F. & Mizon, Grayham E., 2001. "Reformulating empirical macro-econometric modelling," Discussion Paper Series In Economics And Econometrics 104, Economics Division, School of Social Sciences, University of Southampton.
    5. Poskitt, D.S., 2016. "Vector autoregressive moving average identification for macroeconomic modeling: A new methodology," Journal of Econometrics, Elsevier, vol. 192(2), pages 468-484.
    6. Dias, Gustavo Fruet & Kapetanios, George, 2018. "Estimation and forecasting in vector autoregressive moving average models for rich datasets," Journal of Econometrics, Elsevier, vol. 202(1), pages 75-91.
    7. Mala Raghavan & George Athanasopoulos & Param Silvapulle, 2009. "VARMA models for Malaysian Monetary Policy Analysis," Monash Econometrics and Business Statistics Working Papers 6/09, Monash University, Department of Econometrics and Business Statistics.
    8. Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2016. "Large Bayesian VARMAs," Journal of Econometrics, Elsevier, vol. 192(2), pages 374-390.
    9. Marie-Christine Duker & David S. Matteson & Ruey S. Tsay & Ines Wilms, 2024. "Vector AutoRegressive Moving Average Models: A Review," Papers 2406.19702, arXiv.org.
    10. Gil-Alana, Luis A. & Gupta, Rangan & Olubusoye, Olusanya E. & Yaya, OlaOluwa S., 2016. "Time series analysis of persistence in crude oil price volatility across bull and bear regimes," Energy, Elsevier, vol. 109(C), pages 29-37.
    11. Mala Raghavan & George Athanasopoulos & Param Silvapulle, 2016. "Canadian monetary policy analysis using a structural VARMA model," Canadian Journal of Economics, Canadian Economics Association, vol. 49(1), pages 347-373, February.
    12. Jean-Marie Dufour & Tarek Jouini, 2011. "Asymptotic Distributions for Some Quasi-Efficient Estimators in Echelon VARMA Models," CIRANO Working Papers 2011s-25, CIRANO.
    13. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    14. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    15. Alexandra Horobet & Irina Mnohoghitnei & Emanuela Marinela Luminita Zlatea & Lucian Belascu, 2022. "The Interplay between Digitalization, Education and Financial Development: A European Case Study," JRFM, MDPI, vol. 15(3), pages 1-23, March.
    16. George Athanasopoulos & Farshid Vahid, 2008. "A complete VARMA modelling methodology based on scalar components," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 533-554, May.
    17. Joshua C.C. Chan & Eric Eisenstat, 2015. "Efficient estimation of Bayesian VARMAs with time-varying coefficients," CAMA Working Papers 2015-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    18. Fildes, Robert, 2006. "The forecasting journals and their contribution to forecasting research: Citation analysis and expert opinion," International Journal of Forecasting, Elsevier, vol. 22(3), pages 415-432.
    19. Mike Tsionas & Marwan Izzeldin & Lorenzo Trapani, 2019. "Bayesian estimation of large dimensional time varying VARs using copulas," Papers 1912.12527, arXiv.org.
    20. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.

    More about this item

    Keywords

    Forecasting; Identification; Multivariate time series; Scalar components; VARMA models.;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2006-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.