IDEAS home Printed from https://ideas.repec.org/p/mse/cesdoc/b08079.html
   My bibliography  Save this paper

K-balanced games and capacities

Author

Listed:

Abstract

In this paper, we present a generalization of the concept of balanced game for finite games. Balanced games are those having a nonempty core, and this core is usually considered as the solution of game. Based on the concept of k-additivity, we define to so-called k-balanced games and the corresponding generalization of core, the k-additive core, whose elements are not directly imputations but k-additive games. We show that any game is k-balanced for a suitable choice of k, so that the corresponding k-additive core is not empty. For the games in the k-additive core, we propose a sharing procedure to get an imputation and a representative value for the expectations of the players based on the pessimistic criterion. Moreover, we look for necessary and sufficient conditions for a game to be k-balanced. For the general case, it is shown that any game is either balanced or 2-balanced. Finally, we treat the special case of capacities

Suggested Citation

  • Pedro Miranda & Michel Grabisch, 2008. "K-balanced games and capacities," Documents de travail du Centre d'Economie de la Sorbonne b08079, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  • Handle: RePEc:mse:cesdoc:b08079
    as

    Download full text from publisher

    File URL: ftp://mse.univ-paris1.fr/pub/mse/CES2008/B08079.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michel Grabisch & Pedro Miranda, 2008. "On the vertices of the k-additive core," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00321625, HAL.
    2. Chateauneuf, Alain & Jaffray, Jean-Yves, 1989. "Some characterizations of lower probabilities and other monotone capacities through the use of Mobius inversion," Mathematical Social Sciences, Elsevier, vol. 17(3), pages 263-283, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Miranda & Michel Grabisch, 2012. "An algorithm for finding the vertices of the k-additive monotone core," Post-Print hal-00806905, HAL.
    2. Stéphane Gonzalez & Michel Grabisch, 2015. "Preserving coalitional rationality for non-balanced games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 733-760, August.
    3. Michel Grabisch, 2016. "Remarkable polyhedra related to set functions, games and capacities," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 301-326, July.
    4. Grabisch, Michel & Li, Tong, 2011. "On the set of imputations induced by the k-additive core," European Journal of Operational Research, Elsevier, vol. 214(3), pages 697-702, November.
    5. Michel Grabisch, 2016. "Remarkable polyhedra related to set functions, games," Documents de travail du Centre d'Economie de la Sorbonne 16081, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    6. repec:hal:pseose:halshs-01235625 is not listed on IDEAS
    7. Hans Peters, 2016. "Comments on: Remarkable polyhedra related to set functions, games and capacities," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 330-332, July.
    8. repec:hal:pseose:hal-01372858 is not listed on IDEAS
    9. van den Brink, René & Chun, Youngsub & Funaki, Yukihiko & Zou, Zhengxing, 2023. "Balanced externalities and the proportional allocation of nonseparable contributions," European Journal of Operational Research, Elsevier, vol. 307(2), pages 975-983.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grabisch, Michel & Li, Tong, 2011. "On the set of imputations induced by the k-additive core," European Journal of Operational Research, Elsevier, vol. 214(3), pages 697-702, November.
    2. Pedro Miranda & Michel Grabisch, 2012. "An algorithm for finding the vertices of the k-additive monotone core," Post-Print hal-00806905, HAL.
    3. Stéphane Gonzalez & Michel Grabisch, 2015. "Preserving coalitional rationality for non-balanced games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 733-760, August.
    4. repec:hal:pseose:halshs-01235625 is not listed on IDEAS
    5. Michel Grabisch, 2016. "Remarkable polyhedra related to set functions, games and capacities," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 301-326, July.
    6. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    7. Gajdos, T. & Hayashi, T. & Tallon, J.-M. & Vergnaud, J.-C., 2008. "Attitude toward imprecise information," Journal of Economic Theory, Elsevier, vol. 140(1), pages 27-65, May.
    8. Michèle Cohen & Alain Chateauneuf & Eric Danan & Thibault Gajdos & Raphaël Giraud & Meglena Jeleva & Fabrice Philippe & Jean-Marc Tallon & Jean-Christophe Vergnaud, 2011. "Tribute to Jean-Yves Jaffray," Theory and Decision, Springer, vol. 71(1), pages 1-10, July.
    9. Fujimoto, Katsushige & Kojadinovic, Ivan & Marichal, Jean-Luc, 2006. "Axiomatic characterizations of probabilistic and cardinal-probabilistic interaction indices," Games and Economic Behavior, Elsevier, vol. 55(1), pages 72-99, April.
    10. Yehuda Izhakian, 2012. "Ambiguity Measurement," Working Papers 12-01, New York University, Leonard N. Stern School of Business, Department of Economics.
    11. Abellán, Joaquín & Baker, Rebecca M. & Coolen, Frank P.A., 2011. "Maximising entropy on the nonparametric predictive inference model for multinomial data," European Journal of Operational Research, Elsevier, vol. 212(1), pages 112-122, July.
    12. Stéphane Gonzalez & Michel Grabisch, 2015. "Autonomous coalitions," Annals of Operations Research, Springer, vol. 235(1), pages 301-317, December.
    13. Grabisch, Michel & Labreuche, Christophe & Vansnick, Jean-Claude, 2003. "On the extension of pseudo-Boolean functions for the aggregation of interacting criteria," European Journal of Operational Research, Elsevier, vol. 148(1), pages 28-47, July.
    14. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    15. Brice Mayag & Michel Grabisch & Christophe Labreuche, 2009. "A characterization of the 2-additive Choquet integral through cardinal information," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00445132, HAL.
    16. Pereira, Miguel Alves & Figueira, José Rui & Marques, Rui Cunha, 2020. "Using a Choquet integral-based approach for incorporating decision-maker’s preference judgments in a Data Envelopment Analysis model," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1016-1030.
    17. Klaus Nehring, 2003. "Preference for Flexibility and Freedom of Choice in a Savage Framework," Working Papers 51, University of California, Davis, Department of Economics.
    18. Takao Asano & Hiroyuki Kojima, 2022. "Choquet Integrals and Belief Functions," KIER Working Papers 1077, Kyoto University, Institute of Economic Research.
    19. Alain Chateauneuf & Thibault Gajdos & Jean-Yves Jaffray, 2011. "Regular updating," Theory and Decision, Springer, vol. 71(1), pages 111-128, July.
    20. Michel Grabisch, 2015. "Bases and transforms of set functions," Post-Print halshs-01169287, HAL.
    21. Gonzalez, Stéphane & Grabisch, Michel, 2016. "Multicoalitional solutions," Journal of Mathematical Economics, Elsevier, vol. 64(C), pages 1-10.

    More about this item

    Keywords

    Cooperative games; k-additivity; balanced games; capacities; core;
    All these keywords.

    JEL classification:

    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • D7 - Microeconomics - - Analysis of Collective Decision-Making

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:b08079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lucie Label (email available below). General contact details of provider: https://edirc.repec.org/data/cenp1fr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.