IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v17y1989i3p263-283.html
   My bibliography  Save this article

Some characterizations of lower probabilities and other monotone capacities through the use of Mobius inversion

Author

Listed:
  • Chateauneuf, Alain
  • Jaffray, Jean-Yves

Abstract

Monotone capacities (on finite sets) of finite or infinite order (lower probabilities) are characterized by properties of their Möbius inverses. A necessary property of probabilities dominating a given capacity is demonstrated through the use of Gale's theorem for the transshipment problem. This property is shown to be also sufficient if and only if the capacity is monotone of infinite order. A characterization of dominating probabilities specific to capacities of order 2 is also proved.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Chateauneuf, Alain & Jaffray, Jean-Yves, 1989. "Some characterizations of lower probabilities and other monotone capacities through the use of Mobius inversion," Mathematical Social Sciences, Elsevier, vol. 17(3), pages 263-283, June.
  • Handle: RePEc:eee:matsoc:v:17:y:1989:i:3:p:263-283
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0165-4896(89)90056-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:17:y:1989:i:3:p:263-283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.