IDEAS home Printed from https://ideas.repec.org/p/hal/pseptp/hal-02043268.html
   My bibliography  Save this paper

Monotone decomposition of 2-additive Generalized Additive Independence models

Author

Listed:
  • Michel Grabisch

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Christophe Labreuche

    (Laboratoire Albert Fert (ex-UMPhy Unité mixte de physique CNRS/Thales) - THALES [France] - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique)

Abstract

The GAI (Generalized Additive Independence) model proposed by Fishburn is a generalization of the additive value function model, which need not satisfy preferential independence. Its great generality makes however its application and study difficult. We consider a significant subclass of GAI models, namely the discrete 2-additive GAI models, and provide for this class a decomposition into nonneg-ative monotone terms. This decomposition allows a reduction from exponential to quadratic complexity in any optimization problem involving discrete 2-additive models, making them usable in practice.

Suggested Citation

  • Michel Grabisch & Christophe Labreuche, 2018. "Monotone decomposition of 2-additive Generalized Additive Independence models," PSE-Ecole d'économie de Paris (Postprint) hal-02043268, HAL.
  • Handle: RePEc:hal:pseptp:hal-02043268
    DOI: 10.1016/j.mathsocsci.2017.09.007
    Note: View the original document on HAL open archive server: https://hal.science/hal-02043268
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02043268/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.mathsocsci.2017.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Greco, Salvatore & Mousseau, Vincent & Słowiński, Roman, 2014. "Robust ordinal regression for value functions handling interacting criteria," European Journal of Operational Research, Elsevier, vol. 239(3), pages 711-730.
    2. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.
    3. Denis Bouyssou & Marc Pirlot, 2016. "Conjoint Measurement Tools for MCDM," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 97-151, Springer.
    4. Chateauneuf, Alain & Jaffray, Jean-Yves, 1989. "Some characterizations of lower probabilities and other monotone capacities through the use of Mobius inversion," Mathematical Social Sciences, Elsevier, vol. 17(3), pages 263-283, June.
    5. Miranda, P. & Combarro, E.F. & Gil, P., 2006. "Extreme points of some families of non-additive measures," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1865-1884, November.
    6. Michel Grabisch & Jacques Duchene & Frédéric Lino & Patrice Perny, 2002. "Subjective Evaluation of Discomfort in Sitting Positions," Post-Print halshs-00273179, HAL.
    7. Grabisch, Michel, 1996. "The application of fuzzy integrals in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 89(3), pages 445-456, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. GRABISCH, Michel & LABREUCHE, Christophe & RIDAOUI, Mustapha, 2019. "On importance indices in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 277(1), pages 269-283.
    2. Labreuche, Christophe & Grabisch, Michel, 2018. "Using multiple reference levels in Multi-Criteria Decision aid: The Generalized-Additive Independence model and the Choquet integral approaches," European Journal of Operational Research, Elsevier, vol. 267(2), pages 598-611.
    3. Michel Grabisch & Christophe Labreuche & Mustapha Ridaoui, 2022. "Well-formed decompositions of generalized additive independence models," Annals of Operations Research, Springer, vol. 312(2), pages 827-852, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Grabisch & Christophe Labreuche, 2015. "On the decomposition of Generalized Additive Independence models," Documents de travail du Centre d'Economie de la Sorbonne 15064, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    2. Mayag, Brice & Bouyssou, Denis, 2020. "Necessary and possible interaction between criteria in a 2-additive Choquet integral model," European Journal of Operational Research, Elsevier, vol. 283(1), pages 308-320.
    3. Brice Mayag & Michel Grabisch & Christophe Labreuche, 2011. "A representation of preferences by the Choquet integral with respect to a 2-additive capacity," Theory and Decision, Springer, vol. 71(3), pages 297-324, September.
    4. Corrente, Salvatore & Greco, Salvatore & Ishizaka, Alessio, 2016. "Combining analytical hierarchy process and Choquet integral within non-additive robust ordinal regression," Omega, Elsevier, vol. 61(C), pages 2-18.
    5. Silvia Angilella & Marta Bottero & Salvatore Corrente & Valentina Ferretti & Salvatore Greco & Isabella M. Lami, 2016. "Non Additive Robust Ordinal Regression for urban and territorial planning: an application for siting an urban waste landfill," Annals of Operations Research, Springer, vol. 245(1), pages 427-456, October.
    6. Christophe Labreuche & Michel Grabisch, 2016. "A comparison of the GAI model and the Choquet integral with respect to a k-ary capacity," Documents de travail du Centre d'Economie de la Sorbonne 16004, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    7. Brice Mayag & Michel Grabisch & Christophe Labreuche, 2009. "A characterization of the 2-additive Choquet integral through cardinal information," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00445132, HAL.
    8. Michel Grabisch & Christophe Labreuche, 2019. "Interpretation of multicriteria decision making models with interacting criteria," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02381243, HAL.
    9. Ferreira, João J.M. & Jalali, Marjan S. & Ferreira, Fernando A.F., 2018. "Enhancing the decision-making virtuous cycle of ethical banking practices using the Choquet integral," Journal of Business Research, Elsevier, vol. 88(C), pages 492-497.
    10. Labreuche, Christophe & Grabisch, Michel, 2018. "Using multiple reference levels in Multi-Criteria Decision aid: The Generalized-Additive Independence model and the Choquet integral approaches," European Journal of Operational Research, Elsevier, vol. 267(2), pages 598-611.
    11. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.
    12. Paul Alain Kaldjob Kaldjob & Brice Mayag & Denis Bouyssou, 2023. "On the interpretation of the interaction index between criteria in a Choquet integral model," Post-Print hal-03766372, HAL.
    13. Haag, Fridolin & Lienert, Judit & Schuwirth, Nele & Reichert, Peter, 2019. "Identifying non-additive multi-attribute value functions based on uncertain indifference statements," Omega, Elsevier, vol. 85(C), pages 49-67.
    14. Silvia Bortot & Mario Fedrizzi & Silvio Giove, 2011. "Modelling fraud detection by attack trees and Choquet integral," DISA Working Papers 2011/09, Department of Computer and Management Sciences, University of Trento, Italy, revised 31 Aug 2011.
    15. Bilbao-Terol, Amelia & Bilbao-Terol, Celia, 2024. "The Choquet integral supported by a hedonic approach for modelling preferences in hotel selection," Omega, Elsevier, vol. 122(C).
    16. Silvia Bortot & Ricardo Alberto Marques Pereira, 2011. "Inconsistency and non-additive Choquet integration in the Analytic Hierarchy Process," DISA Working Papers 2011/06, Department of Computer and Management Sciences, University of Trento, Italy, revised 29 Jul 2011.
    17. Beliakov, Gleb, 2022. "Knapsack problems with dependencies through non-additive measures and Choquet integral," European Journal of Operational Research, Elsevier, vol. 301(1), pages 277-286.
    18. Zhao Qiaojiao & Zeng Ling & Liu Jinjin, 2016. "Fuzzy Integral Multiple Criteria Decision Making Method Based on Fuzzy Preference Relation on Alternatives," Journal of Systems Science and Information, De Gruyter, vol. 4(3), pages 280-290, June.
    19. Michel Grabisch, 2015. "Fuzzy Measures and Integrals: Recent Developments," Post-Print hal-01302377, HAL.
    20. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:pseptp:hal-02043268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Caroline Bauer (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.