Capturing the intrinsic uncertainty of the VaR: Spectrum representation of a saddlepoint approximation for an estimator of the VaR
Author
Abstract
Suggested Citation
Download full text from publisher
To our knowledge, this item is not available for download. To find whether it is available, there are three options:1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.
References listed on IDEAS
- Dominique Gu�gan & Bertrand Hassani & Kehan Li, 2015. "The Spectral Stress VaR (SSVaR)," Working Papers 2015:17, Department of Economics, University of Venice "Ca' Foscari".
- Dominique Guegan & Bertrand K. Hassani & Kehan Li, 2015. "The Spectral Stress VaR (SSVaR)," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01169537, HAL.
- Kaplan, David M., 2015.
"Improved quantile inference via fixed-smoothing asymptotics and Edgeworth expansion,"
Journal of Econometrics, Elsevier, vol. 185(1), pages 20-32.
- David M. Kaplan, 2013. "Improved Quantile Inference Via Fixed-Smoothing Asymptotics And Edgeworth Expansion," Working Papers 1313, Department of Economics, University of Missouri.
- Matthew Pritsker, 1997. "Evaluating Value at Risk Methodologies: Accuracy versus Computational Time," Journal of Financial Services Research, Springer;Western Finance Association, vol. 12(2), pages 201-242, October.
- Dominique Guegan & Bertrand K. Hassani & Kehan Li, 2015. "The Spectral Stress VaR (SSVaR)," Documents de travail du Centre d'Economie de la Sorbonne 15052, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Dominique Guegan & Bertrand K. Hassani & Kehan Li, 2015. "The Spectral Stress VaR (SSVaR)," Post-Print halshs-01169537, HAL.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dominique Guegan & Bertrand Hassani & Kehan Li, 2017. "Measuring risks in the extreme tail: The extreme VaR and its confidence interval," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01317391, HAL.
- Dominique Guegan & Bertrand K. Hassani & Kehan Li, 2016. "A robust confidence interval of historical Value-at-Risk for small sample," Documents de travail du Centre d'Economie de la Sorbonne 16034, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Dominique Guegan & Bertrand K. Hassani & Kehan Li, 2016. "Uncertainty in historical Value-at-Risk: an alternative quantile-based risk measure," Documents de travail du Centre d'Economie de la Sorbonne 16006, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Dominique Guegan & Bertrand K. Hassani & Kehan Li, 2016. "Uncertainty in historical Value-at-Risk: an alternative quantile-based risk measure," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01277880, HAL.
- Dominique Guegan & Bertrand K. Hassani & Kehan Li, 2016. "Uncertainty in historical Value-at-Risk: an alternative quantile-based risk measure," Post-Print halshs-01277880, HAL.
- Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
- MÃnguez, R. & Conejo, A.J. & GarcÃa-Bertrand, R., 2011. "Reliability and decomposition techniques to solve certain class of stochastic programming problems," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 314-323.
- Rockstuhl, Sebastian & Wenninger, Simon & Wiethe, Christian & Ahlrichs, Jakob, 2022. "The influence of risk perception on energy efficiency investments: Evidence from a German survey," Energy Policy, Elsevier, vol. 167(C).
- Matthew Pritsker, 2001. "The hidden dangers of historical simulation," Finance and Economics Discussion Series 2001-27, Board of Governors of the Federal Reserve System (U.S.).
- Goldman, Matt & Kaplan, David M., 2017.
"Fractional order statistic approximation for nonparametric conditional quantile inference,"
Journal of Econometrics, Elsevier, vol. 196(2), pages 331-346.
- David M. Kaplan & Matt Goldman, 2015. "Fractional order statistic approximation for nonparametric conditional quantile inference," Working Papers 1502, Department of Economics, University of Missouri.
- Matt Goldman & David M. Kaplan, 2016. "Fractional order statistic approximation for nonparametric conditional quantile inference," Papers 1609.09035, arXiv.org.
- Jose A. Lopez, 1999.
"Methods for evaluating value-at-risk estimates,"
Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
- Jose A. Lopez, 1998. "Methods for evaluating value-at-risk estimates," Economic Policy Review, Federal Reserve Bank of New York, vol. 4(Oct), pages 119-124.
- Jose A. Lopez, 1998. "Methods for evaluating value-at-risk estimates," Research Paper 9802, Federal Reserve Bank of New York.
- Silvia Stanescu & Radu Tunaru, 2013. "Quantifying the uncertainty in VaR and expected shortfall estimates," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 15, pages 357-372, Edward Elgar Publishing.
- John Cotter & Kevin Dowd, 2010.
"Estimating financial risk measures for futures positions: A nonparametric approach,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(7), pages 689-703, July.
- Cotter, John & Dowd, Kevin, 2007. "Estimating financial risk measures for futures positions: a non-parametric approach," MPRA Paper 3503, University Library of Munich, Germany.
- John Cotter & Kevin Dowd, 2011. "Estimating Financial Risk Measures for Futures Positions:A Non-Parametric Approach," Working Papers 200613, Geary Institute, University College Dublin.
- john cotter & kevin dowd, 2011. "Estimating financial risk measures for futures positions: a non-parametric approach," Papers 1103.5666, arXiv.org.
- Charles-Olivier Amédée-Manesme & Fabrice Barthélémy, 2018.
"Ex-ante real estate Value at Risk calculation method,"
Annals of Operations Research, Springer, vol. 262(2), pages 257-285, March.
- Charles-Olivier Amédée-Manesme & Fabrice Barthélémy, 2015. "Ex-ante real estate Value at Risk calculation method," ERES eres2015_56, European Real Estate Society (ERES).
- Traian A. Pirvu & Gordan Zitkovic, 2007. "Maximizing the Growth Rate under Risk Constraints," Papers 0706.0480, arXiv.org.
- Chrétien, Stéphane & Coggins, Frank, 2010. "Performance and conservatism of monthly FHS VaR: An international investigation," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 323-333, December.
- Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
- Matt Goldman & David M. Kaplan, 2018.
"Non‐parametric inference on (conditional) quantile differences and interquantile ranges, using L‐statistics,"
Econometrics Journal, Royal Economic Society, vol. 21(2), pages 136-169, June.
- David M. Kaplan & Matt Goldman, 2015. "Nonparametric inference on conditional quantile differences and linear combinations, using L-statistics," Working Papers 1503, Department of Economics, University of Missouri.
- Charles-Olivier Amédée-Manesme & Fabrice Barthélémy, 2022. "Proper use of the modified Sharpe ratios in performance measurement: rearranging the Cornish Fisher expansion," Annals of Operations Research, Springer, vol. 313(2), pages 691-712, June.
- Manuel Kleinknecht & Wing Lon Ng, 2015. "Minimizing Basel III Capital Requirements with Unconditional Coverage Constraint," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 22(4), pages 263-281, October.
More about this item
Keywords
Financial regulation; Value-at-Risk; Order statistic; Uncertainty; Saddlepoint approximation; Stress testing;All these keywords.
JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
- G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation
- G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
NEP fields
This paper has been announced in the following NEP Reports:- NEP-RMG-2016-10-23 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:16034r. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lucie Label (email available below). General contact details of provider: https://edirc.repec.org/data/cenp1fr.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.