IDEAS home Printed from https://ideas.repec.org/p/men/wpaper/71_2017.html
   My bibliography  Save this paper

The attention of a society towards corporate brand name and its determinants within the information-rich economy

Author

Listed:
  • Jaroslav Bukovina

    (Department of Finance, Faculty of Business and Economics, Mendel University in Brno)

Abstract

Corporate reputation can be a valuable corporate asset but a complicated concept to measure. Similarly, it is difficult to identify and quantify the determinants of corporate reputation. Considering the information rich economy and cognitive limits of economic agents (limited attention), ability to identify the effective channels of corporate communication can be a significant advantage for a corporation. This paper contributes with the methodology that enables to evaluate the attention of a society towards corporations and its determinants. The paper proposes the Google’s search volume for the specific corporation as a proxy for the attention of a society towards that company. To identify determinants of attention, the paper employs qualitative approaches Corporate Reputation QuotientTM and RepTrak®, that defines the dimensions of corporate reputation. Further, the paper employs Bayesian model averaging (BMA) to handle the uncertainty in a choice of particular determinants. Set of variables identified by BMA is estimated in a linear dynamic panel environment. Delivered results enable to evaluate the current channels of corporate communication with customers and its costs.

Suggested Citation

  • Jaroslav Bukovina, 2017. "The attention of a society towards corporate brand name and its determinants within the information-rich economy," MENDELU Working Papers in Business and Economics 2017-71, Mendel University in Brno, Faculty of Business and Economics.
  • Handle: RePEc:men:wpaper:71_2017
    as

    Download full text from publisher

    File URL: http://ftp.mendelu.cz/RePEc/men/wpaper/71_2017.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bukovina, Jaroslav, 2016. "Social media big data and capital markets—An overview," Journal of Behavioral and Experimental Finance, Elsevier, vol. 11(C), pages 18-26.
    2. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    3. David Roodman, 2009. "How to do xtabond2: An introduction to difference and system GMM in Stata," Stata Journal, StataCorp LP, vol. 9(1), pages 86-136, March.
    4. Feng Jui Hsu & Tsai Yi Wang & Mu Yen Chen, 2013. "The Impact of Brand Value on Financial Performance," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 3(6), pages 1-9.
    5. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    6. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    7. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    8. Branislav Saxa, 2014. "Forecasting Mortgages: Internet Search Data as a Proxy for Mortgage Credit Demand," Working Papers 2014/14, Czech National Bank.
    9. Todd, Peter M. & Gigerenzer, Gerd, 2003. "Bounding rationality to the world," Journal of Economic Psychology, Elsevier, vol. 24(2), pages 143-165, April.
    10. Kevin Lane Keller & Donald R. Lehmann, 2006. "Brands and Branding: Research Findings and Future Priorities," Marketing Science, INFORMS, vol. 25(6), pages 740-759, 11-12.
    11. Giuseppe De Luca & Jan R. Magnus, 2011. "Bayesian model averaging and weighted-average least squares: Equivariance, stability, and numerical issues," Stata Journal, StataCorp LP, vol. 11(4), pages 518-544, December.
    12. Josef Falkinger, 2008. "Limited Attention as a Scarce Resource in Information-Rich Economies," Economic Journal, Royal Economic Society, vol. 118(532), pages 1596-1620, October.
    13. Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
    14. Richard H. Thaler, 2000. "From Homo Economicus to Homo Sapiens," Journal of Economic Perspectives, American Economic Association, vol. 14(1), pages 133-141, Winter.
    15. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    16. Huigang Chen & Mr. Alin T Mirestean & Mr. Charalambos G Tsangarides, 2011. "Limited Information Bayesian Model Averaging for Dynamic Panels with An Application to a Trade Gravity Model," IMF Working Papers 2011/230, International Monetary Fund.
    17. Christopher A. Sims, 2006. "Rational Inattention: Beyond the Linear-Quadratic Case," American Economic Review, American Economic Association, vol. 96(2), pages 158-163, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamar Crombach & Frank Bohn, 2024. "Uninformed voters with (im)precise expectations: Explaining political budget cycle puzzles," Economics and Politics, Wiley Blackwell, vol. 36(1), pages 275-311, March.
    2. Liu, Lu, 2013. "International stock market interdependence: Are developing markets the same as developed markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 226-238.
    3. Njamen Kengdo Arsène Aurelien & Nchofoung Tii N. & Kos A Mougnol Alice, 2023. "Determinants of Military Spending in Africa: Do Institutions Matter?," Peace Economics, Peace Science, and Public Policy, De Gruyter, vol. 29(4), pages 401-440, December.
    4. Daniel Ştefan Armeanu & Georgeta Vintilă & Ştefan Cristian Gherghina, 2017. "Empirical Study towards the Drivers of Sustainable Economic Growth in EU-28 Countries," Sustainability, MDPI, vol. 10(1), pages 1-22, December.
    5. Cho, Seo-young & Vadlamannati, Krishna Chaitanya, 2010. "Compliance for big brothers: An empirical analysis on the impact of the anti-trafficking protocol," University of Göttingen Working Papers in Economics 118, University of Goettingen, Department of Economics.
    6. Hakkala, Katariina & Heyman, Fredrik & Sjöholm, Fredrik, 2007. "Cross-Border Acquisitions, Multinationals and Wage Elasticities," Working Paper Series 709, Research Institute of Industrial Economics.
    7. Efobi, Uchenna & Asongu, Simplice & Okafor, Chinelo & Tchamyou, Vanessa & Tanankem, Belmondo, 2016. "Diaspora Remittance Inflow, Financial Development and the Industrialisation of Africa," MPRA Paper 76121, University Library of Munich, Germany.
    8. Huy Quang Doan, 2019. "Trade, Institutional Quality and Income: Empirical Evidence for Sub-Saharan Africa," Economies, MDPI, vol. 7(2), pages 1-23, May.
    9. Briglauer, Wolfgang & Dürr, Niklas S. & Gugler, Klaus, 2019. "A retrospective study on the regional benefits and spillover effects of high-speed broadband networks: Evidence from German counties," ZEW Discussion Papers 19-026, ZEW - Leibniz Centre for European Economic Research.
    10. Simplice A. Asongu & Nicholas M. Odhiambo, 2019. "Governance, capital flight and industrialisation in Africa," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-22, December.
    11. Fabbri, Francesca & Marin, Dalia, 2012. "What explains the rise in CEO pay in Germany? A Panel Data Analysis for 1977-2009," Discussion Paper Series of SFB/TR 15 Governance and the Efficiency of Economic Systems 374, Free University of Berlin, Humboldt University of Berlin, University of Bonn, University of Mannheim, University of Munich.
    12. Samuel Fosu, 2013. "Banking Competition in Africa: Sub-regional Comparative Studies," Discussion Papers in Economics 13/12, Division of Economics, School of Business, University of Leicester, revised Jun 2013.
    13. Imam, M. & Jamasb, T. & Llorca, M. & Llorca, M., 2018. "Power Sector Reform and Corruption: Evidence from Electricity Industry in Sub-Saharan Africa," Cambridge Working Papers in Economics 1801, Faculty of Economics, University of Cambridge.
    14. Kampelmann, Stephan & Rycx, François, 2012. "The impact of educational mismatch on firm productivity: Evidence from linked panel data," Economics of Education Review, Elsevier, vol. 31(6), pages 918-931.
    15. Guglielmo Maria Caporale & Anamaria Diana Sova & Robert Sova, 2024. "The Covid‐19 pandemic and European trade flows: Evidence from a dynamic panel model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 2563-2580, July.
    16. Zheng, Xinye & Li, Fanghua & Song, Shunfeng & Yu, Yihua, 2013. "Central government's infrastructure investment across Chinese regions: A dynamic spatial panel data approach," China Economic Review, Elsevier, vol. 27(C), pages 264-276.
    17. Martin Andersson & Hans Lööf, 2009. "Learning‐by‐Exporting Revisited: The Role of Intensity and Persistence," Scandinavian Journal of Economics, Wiley Blackwell, vol. 111(4), pages 893-916, December.
    18. Rosen Azad Chowdhury & Dilshad Jahan & Tapas Mishra & Mamata Parhi, 2023. "A Quality Dimension? A Re-appraisal of Financial Development and Economic Growth Nexus in a Quality-Quantity Setting," Working Papers 2023-02, Swansea University, School of Management.
    19. Piccoli, Luca & Tiezzi, Silvia, 2021. "Rational addiction and time-consistency: An empirical test," Journal of Health Economics, Elsevier, vol. 80(C).
    20. Mohammad Ziaul Hoque & MD. Rabiul Islam & Mohammad Nurul Azam, 2013. "Board Committee Meetings and Firm Financial Performance: An Investigation of Australian Companies," International Review of Finance, International Review of Finance Ltd., vol. 13(4), pages 503-528, December.

    More about this item

    Keywords

    corporate reputation; limited attention; information-rich economy; Bayesian model averaging; dynamic panel model;
    All these keywords.

    JEL classification:

    • M21 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Economics - - - Business Economics
    • M29 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Economics - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:men:wpaper:71_2017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Luděk Kouba (email available below). General contact details of provider: https://edirc.repec.org/data/femencz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.