IDEAS home Printed from https://ideas.repec.org/p/mcm/deptwp/2024-03.html
   My bibliography  Save this paper

Bootstrap Inference on a Factor Model Based Average Treatment Effects Estimator

Author

Listed:
  • Luya Wang
  • Jeffrey S. Racine
  • Qiaoyu Wang

Abstract

We propose a novel bootstrap procedure for conducting inference for factor model based average treatment effects estimators. Our method overcomes bias inherent to existing bootstrap procedures and substantially improves upon existing large sample normal inference theory in small sample settings. The finite sample improvements arising from the use of our proposed procedure are illustrated via a set of Monte Carlo simulations, and formal justification for the procedure is outlined.

Suggested Citation

  • Luya Wang & Jeffrey S. Racine & Qiaoyu Wang, 2024. "Bootstrap Inference on a Factor Model Based Average Treatment Effects Estimator," Department of Economics Working Papers 2024-03, McMaster University.
  • Handle: RePEc:mcm:deptwp:2024-03
    as

    Download full text from publisher

    File URL: http://socialsciences.mcmaster.ca/econ/rsrch/papers/archive/2024-03.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," The Review of Economics and Statistics, MIT Press, vol. 98(3), pages 535-551, July.
    2. Card, David & Krueger, Alan B, 1994. "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania," American Economic Review, American Economic Association, vol. 84(4), pages 772-793, September.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Kathleen T. Li, 2020. "Statistical Inference for Average Treatment Effects Estimated by Synthetic Control Methods," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 2068-2083, December.
    5. Ashenfelter, Orley C, 1978. "Estimating the Effect of Training Programs on Earnings," The Review of Economics and Statistics, MIT Press, vol. 60(1), pages 47-57, February.
    6. Jushan Bai & Serena Ng, 2021. "Matrix Completion, Counterfactuals, and Factor Analysis of Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1746-1763, October.
    7. Cheng Hsiao & H. Steve Ching & Shui Ki Wan, 2012. "A Panel Data Approach For Program Evaluation: Measuring The Benefits Of Political And Economic Integration Of Hong Kong With Mainland China," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 705-740, August.
    8. Xu, Yiqing, 2017. "Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models," Political Analysis, Cambridge University Press, vol. 25(1), pages 57-76, January.
    9. Carvalho, Carlos & Masini, Ricardo & Medeiros, Marcelo C., 2018. "ArCo: An artificial counterfactual approach for high-dimensional panel time-series data," Journal of Econometrics, Elsevier, vol. 207(2), pages 352-380.
    10. Bai, ChongEn & Li, Qi & Ouyang, Min, 2014. "Property taxes and home prices: A tale of two cities," Journal of Econometrics, Elsevier, vol. 180(1), pages 1-15.
    11. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    12. Shi, Zhentao & Huang, Jingyi, 2023. "Forward-selected panel data approach for program evaluation," Journal of Econometrics, Elsevier, vol. 234(2), pages 512-535.
    13. Li, Kathleen T. & Bell, David R., 2017. "Estimation of average treatment effects with panel data: Asymptotic theory and implementation," Journal of Econometrics, Elsevier, vol. 197(1), pages 65-75.
    14. Alberto Abadie, 2021. "Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects," Journal of Economic Literature, American Economic Association, vol. 59(2), pages 391-425, June.
    15. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    16. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024. "Confidence intervals of treatment effects in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 240(1).
    2. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    3. Bruno Ferman & Cristine Pinto, 2021. "Synthetic controls with imperfect pretreatment fit," Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
    4. Callaway, Brantly & Karami, Sonia, 2023. "Treatment effects in interactive fixed effects models with a small number of time periods," Journal of Econometrics, Elsevier, vol. 233(1), pages 184-208.
    5. Kathleen T. Li, 2024. "Frontiers: A Simple Forward Difference-in-Differences Method," Marketing Science, INFORMS, vol. 43(2), pages 267-279, March.
    6. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    7. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2019. "Inference on average treatment effects in aggregate panel data settings," CeMMAP working papers CWP32/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2018. "A $t$-test for synthetic controls," Papers 1812.10820, arXiv.org, revised Jan 2024.
    9. Jason Poulos & Andrea Albanese & Andrea Mercatanti & Fan Li, 2021. "Retrospective causal inference via matrix completion, with an evaluation of the effect of European integration on cross-border employment," LISER Working Paper Series 2021-07, Luxembourg Institute of Socio-Economic Research (LISER).
    10. Dennis Shen & Peng Ding & Jasjeet Sekhon & Bin Yu, 2022. "Same Root Different Leaves: Time Series and Cross-Sectional Methods in Panel Data," Papers 2207.14481, arXiv.org, revised Oct 2022.
    11. Bai, Jushan & Wang, Peng, 2024. "Causal inference using factor models," MPRA Paper 120585, University Library of Munich, Germany.
    12. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    13. Luya Wang & Zheng Li & Qi Li, 2023. "A Tale of Two Policies: Examining Treatment Effects on Housing Prices in Shenzhen, China," Annals of Economics and Finance, Society for AEF, vol. 24(2), pages 277-288, November.
    14. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
    15. Shi, Zhentao & Huang, Jingyi, 2023. "Forward-selected panel data approach for program evaluation," Journal of Econometrics, Elsevier, vol. 234(2), pages 512-535.
    16. David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
    17. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    18. Jianqing Fan & Ricardo Masini & Marcelo C. Medeiros, 2022. "Do We Exploit all Information for Counterfactual Analysis? Benefits of Factor Models and Idiosyncratic Correction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 574-590, April.
    19. Luis Costa & Vivek F. Farias & Patricio Foncea & Jingyuan (Donna) Gan & Ayush Garg & Ivo Rosa Montenegro & Kumarjit Pathak & Tianyi Peng & Dusan Popovic, 2023. "Generalized Synthetic Control for TestOps at ABI: Models, Algorithms, and Infrastructure," Interfaces, INFORMS, vol. 53(5), pages 336-349, September.
    20. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.

    More about this item

    Keywords

    finite sample bias; average treatment effects; bootstrap inference; factor model;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mcm:deptwp:2024-03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/demcmca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.