IDEAS home Printed from https://ideas.repec.org/p/lmu/muenar/18079.html
   My bibliography  Save this paper

Energy storage in residential and commercial buildings via Liquid Organic Hydrogen Carriers (LOHC)

Author

Listed:
  • Teichmann, Daniel
  • Stark, Katharina
  • Müller, Karsten
  • Zöttl, Gregor
  • Wasserscheid, Peter
  • Arlt, Wolfgang

Abstract

This contribution proposes the usage of Liquid Organic Hydrogen Carriers (LOHC) for the establishment of a decentralised energy storage network. Due to the continually increasing amount of renewable energy within the power grid, in particular in countries of the European Union, a huge demand for storage capacities develops that can hardly be met by large-scale systems alone. Because of their high storage density and good manageability LOHC substances permit the local storage of excess energy in residential and commercial buildings. Following the approach of a CHP system ('combined heat and power' or more precisely a `combined heat and storage' system), thermal losses from the storage processes can be used for heating (and cooling) purposes in order to increase the overall efficiency. An evaluation of the economic feasibility identifies possible approaches to generate income from storage operation. The usage of exhaust heat for heating proves to significantly support the business case by providing a considerable financial contribution that is usually not exploitable for centralised storage units.

Suggested Citation

  • Teichmann, Daniel & Stark, Katharina & Müller, Karsten & Zöttl, Gregor & Wasserscheid, Peter & Arlt, Wolfgang, 2012. "Energy storage in residential and commercial buildings via Liquid Organic Hydrogen Carriers (LOHC)," Munich Reprints in Economics 18079, University of Munich, Department of Economics.
  • Handle: RePEc:lmu:muenar:18079
    as

    Download full text from publisher

    File URL: https://epub.ub.uni-muenchen.de/18079/1/oa_18079.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Datas, A. & Ramos, A. & del Cañizo, C., 2019. "Techno-economic analysis of solar PV power-to-heat-to-power storage and trigeneration in the residential sector," Applied Energy, Elsevier, vol. 256(C).
    2. Haupt, Axel & Müller, Karsten, 2017. "Integration of a LOHC storage into a heat-controlled CHP system," Energy, Elsevier, vol. 118(C), pages 1123-1130.
    3. Lee, Sanghun & Kim, Taehong & Han, Gwangwoo & Kang, Sungmin & Yoo, Young-Sung & Jeon, Sang-Yun & Bae, Joongmyeon, 2021. "Comparative energetic studies on liquid organic hydrogen carrier: A net energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Groll, Manfred, 2023. "Can climate change be avoided? Vision of a hydrogen-electricity energy economy," Energy, Elsevier, vol. 264(C).
    5. Hughes, Ben Richard & Chaudhry, Hassam Nasarullah & Calautit, John Kaiser, 2014. "Passive energy recovery from natural ventilation air streams," Applied Energy, Elsevier, vol. 113(C), pages 127-140.
    6. Eypasch, Martin & Schimpe, Michael & Kanwar, Aastha & Hartmann, Tobias & Herzog, Simon & Frank, Torsten & Hamacher, Thomas, 2017. "Model-based techno-economic evaluation of an electricity storage system based on Liquid Organic Hydrogen Carriers," Applied Energy, Elsevier, vol. 185(P1), pages 320-330.
    7. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    8. Fikrt, André & Brehmer, Richard & Milella, Vito-Oronzo & Müller, Karsten & Bösmann, Andreas & Preuster, Patrick & Alt, Nicolas & Schlücker, Eberhard & Wasserscheid, Peter & Arlt, Wolfgang, 2017. "Dynamic power supply by hydrogen bound to a liquid organic hydrogen carrier," Applied Energy, Elsevier, vol. 194(C), pages 1-8.
    9. Frank, Matthias & Deja, Robert & Peters, Roland & Blum, Ludger & Stolten, Detlef, 2018. "Bypassing renewable variability with a reversible solid oxide cell plant," Applied Energy, Elsevier, vol. 217(C), pages 101-112.
    10. Yee Mah, Angel Xin & Ho, Wai Shin & Hassim, Mimi H. & Hashim, Haslenda & Liew, Peng Yen & Muis, Zarina Ab, 2021. "Targeting and scheduling of standalone renewable energy system with liquid organic hydrogen carrier as energy storage," Energy, Elsevier, vol. 218(C).
    11. Purna Chandra Rao & Minyoung Yoon, 2020. "Potential Liquid-Organic Hydrogen Carrier (LOHC) Systems: A Review on Recent Progress," Energies, MDPI, vol. 13(22), pages 1-23, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lmu:muenar:18079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tamilla Benkelberg (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.