IDEAS home Printed from https://ideas.repec.org/p/kyo/wpaper/762.html
   My bibliography  Save this paper

Are Forecast Updates Progressive?

Author

Listed:
  • Chia-Lin Chang

    (Department of Applied Economics, Department of Finance, National Chung Hsing University)

  • Philip Hans Franses

    (Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam)

  • Michael McAleer

    (Erasmus University Rotterdam, Tinbergen Institute, The Netherlands, and Institute of Economic Research, Kyoto University)

Abstract

Many macro-economic forecasts and forecast updates, such as those from the IMF and OECD, typically involve both a model component, which is replicable, as well as intuition (namely, expert knowledge possessed by a forecaster), which is non-replicable. . Learning from previous mistakes can affect both the replicable component of a model as well as intuition. If learning, and hence forecast updates, are progressive, forecast updates should generally become more accurate as the actual value is approached. Otherwise, learning and forecast updates would be neutral. The paper proposes a methodology to test whether macro-economic forecast updates are progressive, where the interaction between model and intuition is explicitly taken into account. The data set for the empirical analysis is for Taiwan, where we have three decades of quarterly data available of forecasts and their updates of two economic fundamentals, namely the inflation rate and real GDP growth rate. The empirical results suggest that the forecast updates for Taiwan are progressive, and that progress can be explained predominantly by improved intuition.

Suggested Citation

  • Chia-Lin Chang & Philip Hans Franses & Michael McAleer, 2011. "Are Forecast Updates Progressive?," KIER Working Papers 762, Kyoto University, Institute of Economic Research.
  • Handle: RePEc:kyo:wpaper:762
    as

    Download full text from publisher

    File URL: http://www.kier.kyoto-u.ac.jp/DP/DP762.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2009. "Expert opinion versus expertise in forecasting," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(3), pages 334-346, August.
    2. Fiebig, Denzil G. & McAleer, Michael & Bartels, Robert, 1992. "Properties of ordinary least squares estimators in regression models with nonspherical disturbances," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 321-334.
    3. Chang, Chia-Lin & Franses, Philip Hans & McAleer, Michael, 2011. "How accurate are government forecasts of economic fundamentals? The case of Taiwan," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1066-1075, October.
    4. Oxley, Les & McAleer, Michael, 1993. "Econometric Issues in Macroeconomic Models with Generated Regressors," Journal of Economic Surveys, Wiley Blackwell, vol. 7(1), pages 1-40.
    5. Pagan, Adrian, 1984. "Econometric Issues in the Analysis of Regressions with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(1), pages 221-247, February.
    6. Bunn, Derek W. & Salo, Ahti A., 1996. "Adjustment of forecasts with model consistent expectations," International Journal of Forecasting, Elsevier, vol. 12(1), pages 163-170, March.
    7. Mcleer, M. & Mckenzie, C.R., 1989. "When Are Two Step Estimators Efficient?," Papers 179, Australian National University - Department of Economics.
    8. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    9. repec:bla:ecorec:v:68:y:1992:i:200:p:65-72 is not listed on IDEAS
    10. MICHAEL McALEER, 1992. "Efficient Estimation: The Rao‐Zyskind Condition, Kruskal's Theorem and Ordinary Least Squares," The Economic Record, The Economic Society of Australia, vol. 68(1), pages 65-72, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. What Have You Been Reading?
      by Dave Giles in Econometrics Beat: Dave Giles' Blog on 2013-06-12 00:47:00

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael McAleer & Felix Chan & Les Oxley, 2013. "Modeling and Simulation: An Overview," Working Papers in Economics 13/18, University of Canterbury, Department of Economics and Finance.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Chia-Lin & Franses, Philip Hans & McAleer, Michael, 2011. "How accurate are government forecasts of economic fundamentals? The case of Taiwan," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1066-1075, October.
    2. Chang, C-L. & McAleer, M.J. & Franses, Ph.H.B.F., 2010. "Combining Non-Replicable Forecasts," Econometric Institute Research Papers EI 2010-44, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2009. "Expert opinion versus expertise in forecasting," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(3), pages 334-346, August.
    4. Franses, Ph.H.B.F. & McAleer, M.J. & Legerstee, R., 2010. "Evaluating Macroeconomic Forecast: A Review of Some Recent Developments," Econometric Institute Research Papers EI 2010-19, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Chang, C-L. & Franses, Ph.H.B.F. & McAleer, M.J., 2009. "How Accurate are Government Forecast of Economic Fundamentals?," Econometric Institute Research Papers EI 2009-09, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2014. "Evaluating Macroeconomic Forecasts: A Concise Review Of Some Recent Developments," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 195-208, April.
    7. Branston, Christopher B. & Groenewold, Nicolaas, 2004. "Investment and share prices: fundamental versus speculative components," The North American Journal of Economics and Finance, Elsevier, vol. 15(2), pages 199-226, August.
    8. Kearney, Colm, 2000. "The determination and international transmission of stock market volatility," Global Finance Journal, Elsevier, vol. 11(1-2), pages 31-52.
    9. Hutson, Elaine & Kearney, Colm, 2001. "Volatility in stocks subject to takeover bids: Australian evidence using daily data," Journal of Empirical Finance, Elsevier, vol. 8(3), pages 273-296, July.
    10. Diamandis, Panayiotis F. & Kouretas, Georgios P. & Zarangas, Leonidas, 2007. "Dual foreign currency markets and the role of expectations: Evidence from the Pacific Basin countries," Research in International Business and Finance, Elsevier, vol. 21(2), pages 238-259, June.
    11. Kearney, Colm & Daly, Kevin, 1997. "Monetary volatility and real output volatility: An empirical model of the financial transmission mechanism in Australia," International Review of Financial Analysis, Elsevier, vol. 6(2), pages 77-95.
    12. Franses, Philip Hans, 2013. "Improving judgmental adjustment of model-based forecasts," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 93(C), pages 1-8.
    13. Hutson, Elaine & Kearney, Colm, 2005. "Merger arbitrage and the interaction between target and bidder stocks during takeover bids," Research in International Business and Finance, Elsevier, vol. 19(1), pages 1-26, March.
    14. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    15. Simplice A. Asongu & Joseph Nnanna, 2020. "Governance and the Capital Flight Trap in Africa," Working Papers of the African Governance and Development Institute. 20/024, African Governance and Development Institute..
    16. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1140-1177, October.
    17. Chang, Chia-Lin & de Bruijn, Bert & Franses, Philip Hans & McAleer, Michael, 2013. "Analyzing fixed-event forecast revisions," International Journal of Forecasting, Elsevier, vol. 29(4), pages 622-627.
    18. Gonçalves, Sílvia & McCracken, Michael W. & Perron, Benoit, 2017. "Tests of equal accuracy for nested models with estimated factors," Journal of Econometrics, Elsevier, vol. 198(2), pages 231-252.
    19. Simplice A. Asongu & Jacinta C. Nwachukwu, 2016. "Revolution empirics: predicting the Arab Spring," Empirical Economics, Springer, vol. 51(2), pages 439-482, September.
    20. Simplice A. Asongu & Joseph I. Uduji & Elda N. Okolo-Obasi, 2020. "Foreign aid volatility and lifelong learning," International Journal of Education Economics and Development, Inderscience Enterprises Ltd, vol. 11(4), pages 370-406.

    More about this item

    Keywords

    Macro-economic forecasts; econometric models; intuition; learning; progressive forecast updates; forecast errors.;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kyo:wpaper:762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Makoto Watanabe (email available below). General contact details of provider: https://edirc.repec.org/data/iekyojp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.