IDEAS home Printed from https://ideas.repec.org/p/kob/dpaper/189.html
   My bibliography  Save this paper

Stochastic Optimal Growth with Bounded or Unbounded Utility and with Bounded or Unbounded Shocks

Author

Listed:
  • Takashi Kamihigashi

    (Research Institute for Economics and Business Administration, Kobe University)

Abstract

This paper studies a one-sector stochastic optimal growth model with i.i.d. productivity shocks in which utility is allowed to be bounded or unbounded, the shocks are allowed to be bounded or unbounded, and the production function is not required to satisfy the Inada conditions at zero and infinity. Our main results are threefold. First, we confirm the Euler equation as well as the existence of a continuous optimal policy function under a minimal set of assumptions. Second, we establish the existence of an invariant distribution under quite general assumptions. Third, we show that the output density converges to a unique invariant density independently of initial output under the assumption that the shock distribution has a density whose support is an interval, bounded or unbounded. In addition, we provide existence and stability results for general one-dimensional Markov processes.

Suggested Citation

  • Takashi Kamihigashi, 2006. "Stochastic Optimal Growth with Bounded or Unbounded Utility and with Bounded or Unbounded Shocks," Discussion Paper Series 189, Research Institute for Economics & Business Administration, Kobe University.
  • Handle: RePEc:kob:dpaper:189
    as

    Download full text from publisher

    File URL: https://www.rieb.kobe-u.ac.jp/academic/ra/dp/English/dp189.pdf
    File Function: First version, 2006
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Le Van, Cuong & Morhaim, Lisa, 2002. "Optimal Growth Models with Bounded or Unbounded Returns: A Unifying Approach," Journal of Economic Theory, Elsevier, vol. 105(1), pages 158-187, July.
    2. Zhang, Yuzhe, 2007. "Stochastic optimal growth with a non-compact state space," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 115-129, February.
    3. William A. Brock & Leonard J. Mirman, 2001. "Optimal Economic Growth And Uncertainty: The Discounted Case," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 1, pages 3-37, Edward Elgar Publishing.
    4. Takashi Kamihigashi, 2006. "Almost sure convergence to zero in stochastic growth models," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(1), pages 231-237, September.
    5. Jorge Durán, 2003. "Discounting long run average growth in stochastic dynamic programs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 22(2), pages 395-413, September.
    6. Paul Milgrom & Ilya Segal, 2002. "Envelope Theorems for Arbitrary Choice Sets," Econometrica, Econometric Society, vol. 70(2), pages 583-601, March.
    7. Kazuo Nishimura & Ryszard Rudnicki & John Stachurski, 2012. "Stochastic Optimal Growth with Nonconvexities," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 261-288, Springer.
    8. Mirman, Leonard J. & Zilcha, Itzhak, 1975. "On optimal growth under uncertainty," Journal of Economic Theory, Elsevier, vol. 11(3), pages 329-339, December.
    9. Stachurski, John, 2002. "Stochastic Optimal Growth with Unbounded Shock," Journal of Economic Theory, Elsevier, vol. 106(1), pages 40-65, September.
    10. Kamihigashi, Takashi & Roy, Santanu, 2007. "A nonsmooth, nonconvex model of optimal growth," Journal of Economic Theory, Elsevier, vol. 132(1), pages 435-460, January.
    11. Rose-Anne Dana & Cuong Le Van & Tapan Mitra & Kazuo Nishimura (ed.), 2006. "Handbook on Optimal Growth 1," Springer Books, Springer, number 978-3-540-32310-5, June.
    12. Mitra, Tapan & Roy, Santanu, 2007. "On the possibility of extinction in a class of Markov processes in economics," Journal of Mathematical Economics, Elsevier, vol. 43(7-8), pages 842-854, September.
    13. Tapan Mitra & Luigi Montrucchio & Fabio Privileggi, 2003. "The nature of the steady state in models of optimal growth under uncertainty," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(1), pages 39-71, December.
    14. Lars J. Olson & Santanu Roy, 2006. "Theory of Stochastic Optimal Economic Growth," Springer Books, in: Rose-Anne Dana & Cuong Le Van & Tapan Mitra & Kazuo Nishimura (ed.), Handbook on Optimal Growth 1, chapter 11, pages 297-335, Springer.
    15. Tapan Mitra & Santanu Roy, 2006. "Optimal exploitation of renewable resources under uncertainty and the extinction of species," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(1), pages 1-23, May.
    16. Kazuo Nishimura & John Stachurski, 2012. "Stability of Stochastic Optimal Growth Models: A New Approach," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 289-307, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takashi Kamihigashi & John Stachurski, 2011. "Existence, Stability and Computation of Stationary Distributions: An Extension of the Hopenhayn-Prescott Theorem," Discussion Paper Series DP2011-32, Research Institute for Economics & Business Administration, Kobe University.
    2. Tapan Mitra & Santanu Roy, 2023. "Stochastic growth, conservation of capital and convergence to a positive steady state," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(1), pages 311-351, July.
    3. Lars J. Olson & Santanu Roy, 2006. "Theory of Stochastic Optimal Economic Growth," Springer Books, in: Rose-Anne Dana & Cuong Le Van & Tapan Mitra & Kazuo Nishimura (ed.), Handbook on Optimal Growth 1, chapter 11, pages 297-335, Springer.
    4. Takashi Kamihigashi & John Stachurski, 2014. "Stability Analysis for Random Dynamical Systems in Economics," Discussion Paper Series DP2014-35, Research Institute for Economics & Business Administration, Kobe University.
    5. Takashi Kamihigashi & John Stachurski, 2011. "Stability of Stationary Distributions in Monotone Economies," ANU Working Papers in Economics and Econometrics 2011-561, Australian National University, College of Business and Economics, School of Economics.
    6. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, December.
    7. Liuchun Deng & Minako Fujio & M. Ali Khan, 2023. "On optimal extinction in the matchbox two-sector model," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(2), pages 445-494, August.
    8. Liuchun Deng & Minako Fujio & M. Ali Khan, 2022. "On Sustainability and Survivability in the Matchbox Two-Sector Model: A Complete Characterization of Optimal Extinction," Papers 2202.02209, arXiv.org.
    9. Santanu Roy & Itzhak Zilcha, 2012. "Stochastic growth with short-run prediction of shocks," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 51(3), pages 539-580, November.
    10. Mirman, Leonard J. & Morand, Olivier F. & Reffett, Kevin L., 2008. "A qualitative approach to Markovian equilibrium in infinite horizon economies with capital," Journal of Economic Theory, Elsevier, vol. 139(1), pages 75-98, March.
    11. repec:ipg:wpaper:2014-086 is not listed on IDEAS
    12. Mitra, Tapan & Roy, Santanu, 2017. "Optimality of Ramsey–Euler policy in the stochastic growth model," Journal of Economic Theory, Elsevier, vol. 172(C), pages 1-25.
    13. Kazuo Nishimura & Ryszard Rudnicki & John Stachurski, 2012. "Stochastic Optimal Growth with Nonconvexities," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 261-288, Springer.
    14. Mitra, Tapan & Roy, Santanu, 2012. "Sustained positive consumption in a model of stochastic growth: The role of risk aversion," Journal of Economic Theory, Elsevier, vol. 147(2), pages 850-880.
    15. repec:cte:werepe:35342 is not listed on IDEAS
    16. Cai, Yiyong & Kamihigashi, Takashi & Stachurski, John, 2014. "Stochastic optimal growth with risky labor supply," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 167-176.
    17. Gong, Liutang & Zhao, Xiaojun & Yang, Yunhong & Hengfu, Zou, 2010. "Stochastic growth with social-status concern: The existence of a unique stable distribution," Journal of Mathematical Economics, Elsevier, vol. 46(4), pages 505-518, July.
    18. Chatterjee, Partha & Shukayev, Malik, 2008. "Note on positive lower bound of capital in the stochastic growth model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(7), pages 2137-2147, July.
    19. Kamihigashi, Takashi & Stachurski, John, 2016. "Seeking ergodicity in dynamic economies," Journal of Economic Theory, Elsevier, vol. 163(C), pages 900-924.
    20. Mitra, Tapan & Roy, Santanu, 2007. "On the possibility of extinction in a class of Markov processes in economics," Journal of Mathematical Economics, Elsevier, vol. 43(7-8), pages 842-854, September.
    21. Takashi Kamihigashi & John Stachurski, 2014. "Interlinkage between Real Exchange rate and Current Account Behaviors: Evidence from India," Working Papers 2014-86, Department of Research, Ipag Business School.
    22. Bäuerle, Nicole & Jaśkiewicz, Anna, 2018. "Stochastic optimal growth model with risk sensitive preferences," Journal of Economic Theory, Elsevier, vol. 173(C), pages 181-200.

    More about this item

    Keywords

    Stochastic growth; Unbounded utility; Bounded or unbounded shocks; Markov processes; Existence and stability of a invariant distribution;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kob:dpaper:189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Office of Promoting Research Collaboration, Research Institute for Economics & Business Administration, Kobe University (email available below). General contact details of provider: https://edirc.repec.org/data/rikobjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.