IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-22397-6_12.html
   My bibliography  Save this book chapter

Stability of Stochastic Optimal Growth Models: A New Approach

In: Nonlinear Dynamics in Equilibrium Models

Author

Listed:
  • Kazuo Nishimura

    (Kyoto University)

  • John Stachurski

    (Australian National University)

Abstract

Many economic models are now explicitly dynamic and stochastic. Their state variables evolve in line with the decisions and actions of individual economic agents. These decisions are identified in turn by imposing rationality. Depending on technology, market structure, time discount rates and other primitives, rational behavior may lead either to stability or to instability.

Suggested Citation

  • Kazuo Nishimura & John Stachurski, 2012. "Stability of Stochastic Optimal Growth Models: A New Approach," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 289-307, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-22397-6_12
    DOI: 10.1007/978-3-642-22397-6_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-952, July.
    2. W. Davis Dechert & Kazuo Nishimura, 2012. "A Complete Characterization of Optimal Growth Paths in an Aggregated Model with a Non-Concave Production Function," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 237-257, Springer.
    3. John Stachurski, 2003. "Stochastic growth: asymptotic distributions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 21(4), pages 913-919, June.
    4. Skiba, A K, 1978. "Optimal Growth with a Convex-Concave Production Function," Econometrica, Econometric Society, vol. 46(3), pages 527-539, May.
    5. Flam, S.D. & Evstigneev, I.V., 1997. "The Turnpike Property and the Central Limit Theorem in Stochastic Models of Economic Dynamics," Norway; Department of Economics, University of Bergen 171, Department of Economics, University of Bergen.
    6. Futia, Carl A, 1982. "Invariant Distributions and the Limiting Behavior of Markovian Economic Models," Econometrica, Econometric Society, vol. 50(2), pages 377-408, March.
    7. William A. Brock & Leonard J. Mirman, 2001. "Optimal Economic Growth And Uncertainty: The Discounted Case," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 1, pages 3-37, Edward Elgar Publishing.
    8. Carl Futia, 2010. "Invariant Distributions and the Limiting Behavior of Markovian Economic Models," Levine's Working Paper Archive 497, David K. Levine.
    9. Rabi Bhattacharya & Mukul Majumdar, 2003. "Dynamical systems subject to random shocks: An introduction," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(1), pages 1-12, December.
    10. Boldrin, Michele & Montrucchio, Luigi, 1986. "On the indeterminacy of capital accumulation paths," Journal of Economic Theory, Elsevier, vol. 40(1), pages 26-39, October.
    11. Donaldson, John B. & Mehra, Rajnish, 1983. "Stochastic growth with correlated production shocks," Journal of Economic Theory, Elsevier, vol. 29(2), pages 282-312, April.
    12. Mukul Majumdar & Tapan Mitra & Yaw Nyarko, 1989. "Dynamic Optimization Under Uncertainty: Non-convex Feasible Set," Palgrave Macmillan Books, in: George R. Feiwel (ed.), Joan Robinson and Modern Economic Theory, chapter 19, pages 545-590, Palgrave Macmillan.
    13. Hopenhayn, Hugo A & Prescott, Edward C, 1992. "Stochastic Monotonicity and Stationary Distributions for Dynamic Economies," Econometrica, Econometric Society, vol. 60(6), pages 1387-1406, November.
    14. Mirman, Leonard J. & Zilcha, Itzhak, 1975. "On optimal growth under uncertainty," Journal of Economic Theory, Elsevier, vol. 11(3), pages 329-339, December.
    15. Stachurski, John, 2002. "Stochastic Optimal Growth with Unbounded Shock," Journal of Economic Theory, Elsevier, vol. 106(1), pages 40-65, September.
    16. Amir, R. & Evstigneev, I. V., 2000. "A functional central limit theorem for equilibrium paths of economic dynamics," Journal of Mathematical Economics, Elsevier, vol. 33(1), pages 81-99, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stachurski, John, 2002. "Stochastic Optimal Growth with Unbounded Shock," Journal of Economic Theory, Elsevier, vol. 106(1), pages 40-65, September.
    2. Lars J. Olson & Santanu Roy, 2006. "Theory of Stochastic Optimal Economic Growth," Springer Books, in: Rose-Anne Dana & Cuong Le Van & Tapan Mitra & Kazuo Nishimura (ed.), Handbook on Optimal Growth 1, chapter 11, pages 297-335, Springer.
    3. Kazuo Nishimura & Ryszard Rudnicki & John Stachurski, 2004. "Stochastic Growth With Nonconvexities:The Optimal Case," Department of Economics - Working Papers Series 897, The University of Melbourne.
    4. Azariadis, Costas & Stachurski, John, 2005. "Poverty Traps," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 5, Elsevier.
    5. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, April.
    6. Leonard J. Mirman & Kevin Reffett & John Stachurski, 2005. "Some stability results for Markovian economic semigroups," International Journal of Economic Theory, The International Society for Economic Theory, vol. 1(1), pages 57-72, March.
    7. repec:cte:werepe:35342 is not listed on IDEAS
    8. Santos, Manuel S., 2004. "Simulation-based estimation of dynamic models with continuous equilibrium solutions," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 465-491, June.
    9. Takashi Kamihigashi & John Stachurski, 2014. "Stability Analysis for Random Dynamical Systems in Economics," Discussion Paper Series DP2014-35, Research Institute for Economics & Business Administration, Kobe University.
    10. John Stachurski, 2004. "Asymptotic Statistical Properties Of The Neoclassical Optimal Growth Model," Department of Economics - Working Papers Series 898, The University of Melbourne.
    11. Olson, Lars J., 1995. "Dynamic Economic Models with Uncertainty and Irreversibility: Methods and Applications," Working Papers 197822, University of Maryland, Department of Agricultural and Resource Economics.
    12. Zhang, Yuzhe, 2007. "Stochastic optimal growth with a non-compact state space," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 115-129, February.
    13. Mirman, Leonard J. & Morand, Olivier F. & Reffett, Kevin L., 2008. "A qualitative approach to Markovian equilibrium in infinite horizon economies with capital," Journal of Economic Theory, Elsevier, vol. 139(1), pages 75-98, March.
    14. Juan Pablo Rinc'on-Zapatero, 2019. "Existence and Uniqueness of Solutions to the Stochastic Bellman Equation with Unbounded Shock," Papers 1907.07343, arXiv.org.
    15. Kazuo Nishimura & Ryszard Rudnicki & John Stachurski, 2012. "Stochastic Optimal Growth with Nonconvexities," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 261-288, Springer.
    16. Cai, Yiyong & Kamihigashi, Takashi & Stachurski, John, 2014. "Stochastic optimal growth with risky labor supply," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 167-176.
    17. Tapan Mitra & Luigi Montrucchio & Fabio Privileggi, 2003. "The nature of the steady state in models of optimal growth under uncertainty," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(1), pages 39-71, December.
    18. Juan Pablo Rincón-Zapatero, 2020. "Differentiability of the value function and Euler equation in non-concave discrete-time stochastic dynamic programming," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 8(1), pages 79-88, April.
    19. Stachurski, John, 2003. "Economic dynamical systems with multiplicative noise," Journal of Mathematical Economics, Elsevier, vol. 39(1-2), pages 135-152, February.
    20. Santos, Manuel S., 2003. "Simulation-based estimation of dynamic models with continuous equilibrium solutions," UC3M Working papers. Economics we034716, Universidad Carlos III de Madrid. Departamento de Economía.
    21. John Stachurski, 2003. "Stochastic growth: asymptotic distributions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 21(4), pages 913-919, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-22397-6_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.