IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v42y2006i1p74-96.html
   My bibliography  Save this article

Stochastic optimal growth with nonconvexities

Author

Listed:
  • Nishimura, Kazuo
  • Rudnicki, Ryszard
  • Stachurski, John

Abstract

The stochastic optimal growth model (Brock and Mirman 1972) is a foundation stone of modern macroeconomic and econometric research. To accommodate the data, however, economists are often forced to go beyond the convex production tech- nology used in these original studies. Nonconvexities lead to technical difficulties which applied researchers would rather not confront. Value functions are in general no longer smooth, optimal policies contain jumps, and the Euler equation may not hold.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Nishimura, Kazuo & Rudnicki, Ryszard & Stachurski, John, 2006. "Stochastic optimal growth with nonconvexities," Journal of Mathematical Economics, Elsevier, vol. 42(1), pages 74-96, February.
  • Handle: RePEc:eee:mateco:v:42:y:2006:i:1:p:74-96
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4068(05)00068-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mirman, Leonard J. & Morand, Olivier F. & Reffett, Kevin L., 2008. "A qualitative approach to Markovian equilibrium in infinite horizon economies with capital," Journal of Economic Theory, Elsevier, vol. 139(1), pages 75-98, March.
    2. Schenk-Hoppe, Klaus Reiner, 2005. "Poverty traps and business cycles in a stochastic overlapping generations economy with S-shaped law of motion," Journal of Macroeconomics, Elsevier, vol. 27(2), pages 275-288, June.
    3. Lucas, Robert E, Jr, 1986. "Adaptive Behavior and Economic Theory," The Journal of Business, University of Chicago Press, vol. 59(4), pages 401-426, October.
    4. Amir, Rabah & Mirman, Leonard J & Perkins, William R, 1991. "One-Sector Nonclassical Optimal Growth: Optimality Conditions and Comparative Dynamics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 32(3), pages 625-644, August.
    5. William A. Brock & Leonard J. Mirman, 2001. "Optimal Economic Growth And Uncertainty: The Discounted Case," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 1, pages 3-37, Edward Elgar Publishing.
    6. Takashi Kamihigashi, 2006. "Almost sure convergence to zero in stochastic growth models," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(1), pages 231-237, September.
    7. K. Askri & C. Le Van, 1998. "Differentiability of the Value Function of Nonclassical Optimal Growth Models," Journal of Optimization Theory and Applications, Springer, vol. 97(3), pages 591-604, June.
    8. Mirman, Leonard J. & Zilcha, Itzhak, 1975. "On optimal growth under uncertainty," Journal of Economic Theory, Elsevier, vol. 11(3), pages 329-339, December.
    9. Joshi, Sumit, 1997. "Turnpike Theorems in Nonconvex Nonstationary Environments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(1), pages 225-248, February.
    10. W. Davis Dechert & Kazuo Nishimura, 2012. "A Complete Characterization of Optimal Growth Paths in an Aggregated Model with a Non-Concave Production Function," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 237-257, Springer.
    11. Skiba, A K, 1978. "Optimal Growth with a Convex-Concave Production Function," Econometrica, Econometric Society, vol. 46(3), pages 527-539, May.
    12. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    13. Edward C. Prescott, 2003. "Non-convexities in quantitative general equilibrium studies of business cycles," Staff Report 312, Federal Reserve Bank of Minneapolis.
    14. Danthine, Jean-Pierre & Donaldson, John B, 1981. "Stochastic Properties of Fast vs. Slow Growing Economies," Econometrica, Econometric Society, vol. 49(4), pages 1007-1033, June.
    15. Long, John B, Jr & Plosser, Charles I, 1983. "Real Business Cycles," Journal of Political Economy, University of Chicago Press, vol. 91(1), pages 39-69, February.
    16. Mukul Majumdar & Tapan Mitra & Yaw Nyarko, 1989. "Dynamic Optimization Under Uncertainty: Non-convex Feasible Set," Palgrave Macmillan Books, in: George R. Feiwel (ed.), Joan Robinson and Modern Economic Theory, chapter 19, pages 545-590, Palgrave Macmillan.
    17. Tapan Mitra & Santanu Roy, 2006. "Optimal exploitation of renewable resources under uncertainty and the extinction of species," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(1), pages 1-23, May.
    18. Kazuo Nishimura & John Stachurski, 2012. "Stability of Stochastic Optimal Growth Models: A New Approach," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 289-307, Springer.
    19. Amir, Rabah, 1997. "A new look at optimal growth under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 22(1), pages 67-86, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takashi Kamihigashi, 2006. "Almost sure convergence to zero in stochastic growth models," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(1), pages 231-237, September.
    2. Ha-Huy, Thai & Tran, Nhat Thien, 2020. "A simple characterisation for sustained growth," Journal of Mathematical Economics, Elsevier, vol. 91(C), pages 141-147.
    3. Lars J. Olson & Santanu Roy, 2006. "Theory of Stochastic Optimal Economic Growth," Springer Books, in: Rose-Anne Dana & Cuong Le Van & Tapan Mitra & Kazuo Nishimura (ed.), Handbook on Optimal Growth 1, chapter 11, pages 297-335, Springer.
    4. John Stachurski & Vance Martin, 2008. "Computing the Distributions of Economic Models via Simulation," Econometrica, Econometric Society, vol. 76(2), pages 443-450, March.
    5. Kamihigashi, Takashi, 2007. "Stochastic optimal growth with bounded or unbounded utility and with bounded or unbounded shocks," Journal of Mathematical Economics, Elsevier, vol. 43(3-4), pages 477-500, April.
    6. Takashi Kamihigashi & John Stachurski, 2014. "Stability Analysis for Random Dynamical Systems in Economics," Discussion Paper Series DP2014-35, Research Institute for Economics & Business Administration, Kobe University.
    7. Tapan Mitra & Santanu Roy, 2023. "Stochastic growth, conservation of capital and convergence to a positive steady state," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(1), pages 311-351, July.
    8. Ha-Huy, Thai & Tran, Nhat-Thien, 2019. "A simple characterization for sustained growth," MPRA Paper 94576, University Library of Munich, Germany.
    9. Mitra, Tapan & Roy, Santanu, 2007. "On the possibility of extinction in a class of Markov processes in economics," Journal of Mathematical Economics, Elsevier, vol. 43(7-8), pages 842-854, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazuo Nishimura & Ryszard Rudnicki & John Stachurski, 2004. "Stochastic Growth With Nonconvexities:The Optimal Case," Department of Economics - Working Papers Series 897, The University of Melbourne.
    2. Lars J. Olson & Santanu Roy, 2006. "Theory of Stochastic Optimal Economic Growth," Springer Books, in: Rose-Anne Dana & Cuong Le Van & Tapan Mitra & Kazuo Nishimura (ed.), Handbook on Optimal Growth 1, chapter 11, pages 297-335, Springer.
    3. Azariadis, Costas & Stachurski, John, 2005. "Poverty Traps," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 5, Elsevier.
    4. Mirman, Leonard J. & Morand, Olivier F. & Reffett, Kevin L., 2008. "A qualitative approach to Markovian equilibrium in infinite horizon economies with capital," Journal of Economic Theory, Elsevier, vol. 139(1), pages 75-98, March.
    5. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, April.
    6. Tapan Mitra & Santanu Roy, 2023. "Stochastic growth, conservation of capital and convergence to a positive steady state," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(1), pages 311-351, July.
    7. Juan Pablo Rincón-Zapatero, 2020. "Differentiability of the value function and Euler equation in non-concave discrete-time stochastic dynamic programming," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 8(1), pages 79-88, April.
    8. Takashi Kamihigashi & John Stachurski, 2011. "Stability of Stationary Distributions in Monotone Economies," ANU Working Papers in Economics and Econometrics 2011-561, Australian National University, College of Business and Economics, School of Economics.
    9. Kazuo Nishimura & John Stachurski, 2012. "Stability of Stochastic Optimal Growth Models: A New Approach," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 289-307, Springer.
    10. Kamihigashi, Takashi & Roy, Santanu, 2007. "A nonsmooth, nonconvex model of optimal growth," Journal of Economic Theory, Elsevier, vol. 132(1), pages 435-460, January.
    11. Cai, Yiyong & Kamihigashi, Takashi & Stachurski, John, 2014. "Stochastic optimal growth with risky labor supply," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 167-176.
    12. Chatterjee, Partha & Shukayev, Malik, 2008. "Note on positive lower bound of capital in the stochastic growth model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(7), pages 2137-2147, July.
    13. Takashi Kamihigashi & John Stachurski, 2014. "Stability Analysis for Random Dynamical Systems in Economics," Discussion Paper Series DP2014-35, Research Institute for Economics & Business Administration, Kobe University.
    14. Nishimura, Kazuo & Stachurski, John, 2007. "Stochastic optimal policies when the discount rate vanishes," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1416-1430, April.
    15. Kamihigashi, Takashi, 2007. "Stochastic optimal growth with bounded or unbounded utility and with bounded or unbounded shocks," Journal of Mathematical Economics, Elsevier, vol. 43(3-4), pages 477-500, April.
    16. Takashi Kamihigashi & John Stachurski, 2011. "Existence, Stability and Computation of Stationary Distributions: An Extension of the Hopenhayn-Prescott Theorem," Discussion Paper Series DP2011-32, Research Institute for Economics & Business Administration, Kobe University.
    17. Manjira Datta, 1999. "Optimal accumulation in a small open economy with technological uncertainty," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 13(1), pages 207-219.
    18. Joshi, Sumit, 2003. "The stochastic turnpike property without uniformity in convex aggregate growth models," Journal of Economic Dynamics and Control, Elsevier, vol. 27(7), pages 1289-1315, May.
    19. Mitra, Tapan & Roy, Santanu, 2012. "Sustained positive consumption in a model of stochastic growth: The role of risk aversion," Journal of Economic Theory, Elsevier, vol. 147(2), pages 850-880.
    20. Leonard J. Mirman & Kevin Reffett & John Stachurski, 2005. "Some stability results for Markovian economic semigroups," International Journal of Economic Theory, The International Society for Economic Theory, vol. 1(1), pages 57-72, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:42:y:2006:i:1:p:74-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.